Abstract
In this paper, based on the splittings of the coefficient matrix in the PageRank problem, the coupled iteration algorithms are presented for computing PageRank vector. Convergence conditions of the proposed algorithms are analyzed in detail. Furthermore, the choices of the optimal parameters are discussed for some special cases. Finally, several numerical examples are given to illustrate the effectiveness of the proposed algorithms.







Similar content being viewed by others
References
Page, L., Brin, S., Motwami, R., Winograd, T.: The Pagerank citation ranking: bringing order to the web. Technical Report, Computer Science Department, Stanford University (1998)
Boldi, P., Santini, M., Vigna, S.: PageRank as a function of the damping factor. In: Proceedings of the 14th International World Web Conference. ACM, New York (2005)
Xie, Y.J., Ma, C.F.: A relaxed two-step splitting iteration method for computing PageRank. Comp. Appl. Math. 37, 221–233 (2018)
Arasu, A., Novak, J., Tomkins, A., Tomlin, J.: PageRank computation and the structure of the web: experiments and algorithms. In: Proceedings of 11th International World Web Conference, Honolulu (2002)
Tian, Z.L., Liu, Y., Zhang, Y., Liu, Z.Y., Tian, M.Y.: The general inner-outer iteration method based on regular splittings for the PageRank problem. Appl. Math. Comput. 271, 337–343 (2018)
Wen, C., Huang, T.Z., Shen, Z.L.: A note on the two-step matrix splitting iteration for computing PageRank. J. Comput. Appl. Math. 315, 87–97 (2017)
Gu, C.Q., Wang, L.: On the multi-splitting iteration method for computing PageRank. J. Appl. Math. Comput. 42, 479–490 (2013)
Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Trans. Internet Technol. 5, 92–128 (2005)
Huang, N., Ma, C.F.: Parallel multisplitting iteration methods based on M-splitting for the PageRank problem. Appl. Math. Comput. 271, 337–343 (2015)
Kamvar, S., Haveliwala, T., Manning, C., Golub, G.: Extrapolation methods for accelerating PageRank computations. In: Proceedings of the 12th International World Web Conference. pp. 261–270, ACM, New York (2003)
Gu, C.Q., Xie, F., Zhang, K.: A two-step matrix splitting iteration for computing PageRank. J. Comput. Appl. Math. 278, 19–28 (2015)
Hadjimos, A.: Accelerated overrelaxation method. Math. Comp. 32, 149–157 (1978)
Song, Y.Z.: On the convergence of the MAOR method. J. Comput. Appl. Math. 79, 299–317 (1997)
Shen, Z.L., Huang, T.Z., Carpentieri, B., Gu, X.M., Wen, C.: An efficient elimination strategy for solving PageRank problems. Appl. Math. Comput. 298, 111–122 (2017)
Langville, A.N., Meyer, C.D., PageRank, Googles: Beyond The Science of Search Engine Rankings. Princeton University Press, Princeton (2006)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn., pp 330–332. The Johns Hopkins University Press, Baltimore (1996)
Brezinski, C., Redivo-Zaglia, M.: The PageRank vector: properties, computation, approximation, and acceleration. SIAM J. Matrix Anal. Appl. 28, 551–575 (2006)
Gu, C.Q., Jiang, X.L., Nie, Y., Chen, Z.B.: A preprocessed multi-step splitting iteration for computing PageRank. Appl. Math. Comput. 338, 87–100 (2018)
Gu, C.Q., Jiang, X.L., Shao, C., Chen, Z.B.: A GMRES-Power algorithm for computing PageRank problems. J. Comput. Appl. Math. 343, 113–123 (2018)
Varga, R.S.: Matrix Iterative Analysis, pp 63–143. Springer, Berlin Heidelberg (2000)
Berkhin, P.: A survey on PageRank computing. Internet Math. 2, 73–120 (2005)
Gu, C.Q., Wang, W.W.: An Arnoldi-Inout algorithm for computing PageRank problems. J. Comput. Appl. Math. 309, 219–229 (2017)
Langville, A., Meyer, C.: Deeper inside PageRank. Internet Math. 1, 335–380 (2004)
Gleich, D.F., Gray, A.P., Greif, C., Lau, T.: An inner-outer iteration method for computing PageRank. SIAM J. Sci. Comput. 32, 349–371 (2010)
Tian, M.Y., Zhang, Y., Wang, Y.D., Tian, Z.L.: A general multi-splitting iteration method for computing PageRank. Comp. Appl. Math. 38, 60 (2019). https://doi.org/10.1007/s40314-019-0830-8
Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. Academic Press, NewYork (1979)
Demmel, J.W.: Applied numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia (1997)
Wu, G., Wei, Y.M.: A Power-Arnoldi algorithm for computing pagerank. Numer. Linear Algebra Appl. 14, 521–546 (2007)
Migallón, H., Migallón, V., Palomino, J.A., Penadés, J.: A heuristic relaxed extrapolated algorithm for accelerating PageRank. Adv. Eng. Softw. 000, 1–8 (2016)
Migallón, H., Migallón, V., Penadés, J.: Parallel two-stage algorithms for solving the PageRank problem. Adv. Eng. Softw. 25, 188–199 (2018)
Tian, Z.L., Tian, M.Y., Liu, Z.Y., Xu, T.Y.: The Jacobi and Gauss-Seidel-type iteration methods for the matrix equation AXB = C. Appl. Math. Comput. 292, 63–75 (2017)
Saad, Y.: Iterative methods for sparse linear systems. Soc. Ind. Appl. Math. US (2000)
Kamvar, S.D., Haveliwala, T.H., Golub, G.: Adaptive methods for the computation of PageRank. Linear Algebra Appl. 386, 51–65 (2004)
Wu, G., Wei, Y.M.: An Arnoldi-extrapolation algorithm for computing PageRank. J. Comput. Appl. Math. 234, 3196–3212 (2010)
Njeru, P.N., Guo, X.P.: Accelerated SOR-like method for augmented linear systems. BIT Numer. Math. 56(2), 557–571 (2016)
Zhang, W.X., Zhou, D.: Coupled iterative algorithms based on optimisation for solving Sylvester matrix equations. IET Control Theory Appl. 13, 584–593 (2019)
Shepelyansky, D.L., Zhirov, D.V.: Towards Google matrix of brain. Phys. Lett. A. 374, 3206–3209 (2010)
Zuo, X.N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F.X., Sporns, O., Milham, M.P.: Network centrality in the human functional connectome. Cereb Cortex. 22, 1862–1875 (2012)
Pedroche, F.: , Competitivity groups on social network sites. Math. Comput. Model. 52, 1052–1057 (2010)
Amodio, P., Brugnano, L.: Recent advances in bibliometirc indexes and the PageRank problem. J. Comput. Appl. Math. 267, 182–194 (2014)
Sidi, A.: Vector extrapolation methods with applications to solution of large systems of equations and to PageRank computations. Comput. Math. Appl. 56, 1–24 (2008)
Shen, Z.L., Huang, T.Z., Carpentieri, B., Wen, C., Gu, X.M., Tan, X.Y.: Off-diagonal low-rank preconditioner for difficult PageRank problems. J. Comput. Appl. Math. 346, 456–470 (2019)
Jia, Z.X.: Refined iterative algorithms based on Arnoldis process for large unsymmetric eigenproblems. Linear Algebra Appl. 259, 1–23 (1997)
Morgan, R., Zeng, M.: A harmonic restarted Arnoldi algorithm for calculating eigenvalues and determining multiplicity. Linear Algebra Appl. 415, 96–113 (2006)
Tian, Z.L., Liu, X.Y., Wang, Y.D., Wen, P.H.: The modified matrix splitting iteration method for computing PageRank problem. Filomat. 33, 725–740 (2019)
Bai, Z.Z., Wang, Z.Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428, 2900–2932 (2008)
Golub, G.H., Greif, C.: An Arnoldi-type algorithm for computing PageRank. BIT 46, 759–771 (2006)
Hu, Q.Y., Wen, C., Huang, T.Z., Shen, Z.L., Gu, X.M.: A variant of the Power-Arnoldi algorithm for computing PageRank. J. Comput. Appl. Math. 381, 113034 (2021)
Tian, Z.L., Zhang, Y., Wang, J.X., Gu, C.Q.: Several relaxed iteration methods for computing PageRank. J. Comput. Appl. Math. 388, 113295 (2021)
Funding
The work is supported by the National Natural Science Foundation of China (Grant No. 12071335), Teaching Reform and Innovation Project of Shanxi University of Finance and Economics (2019112), and Teaching Reform and Innovation Project of Higher Education in Shanxi Province (J2019109).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Tian, Z., Liu, Z. & Dong, Y. The coupled iteration algorithms for computing PageRank. Numer Algor 89, 1603–1637 (2022). https://doi.org/10.1007/s11075-021-01166-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-021-01166-x