Skip to main content
Log in

The coupled iteration algorithms for computing PageRank

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, based on the splittings of the coefficient matrix in the PageRank problem, the coupled iteration algorithms are presented for computing PageRank vector. Convergence conditions of the proposed algorithms are analyzed in detail. Furthermore, the choices of the optimal parameters are discussed for some special cases. Finally, several numerical examples are given to illustrate the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Page, L., Brin, S., Motwami, R., Winograd, T.: The Pagerank citation ranking: bringing order to the web. Technical Report, Computer Science Department, Stanford University (1998)

  2. Boldi, P., Santini, M., Vigna, S.: PageRank as a function of the damping factor. In: Proceedings of the 14th International World Web Conference. ACM, New York (2005)

  3. Xie, Y.J., Ma, C.F.: A relaxed two-step splitting iteration method for computing PageRank. Comp. Appl. Math. 37, 221–233 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arasu, A., Novak, J., Tomkins, A., Tomlin, J.: PageRank computation and the structure of the web: experiments and algorithms. In: Proceedings of 11th International World Web Conference, Honolulu (2002)

  5. Tian, Z.L., Liu, Y., Zhang, Y., Liu, Z.Y., Tian, M.Y.: The general inner-outer iteration method based on regular splittings for the PageRank problem. Appl. Math. Comput. 271, 337–343 (2018)

    MATH  Google Scholar 

  6. Wen, C., Huang, T.Z., Shen, Z.L.: A note on the two-step matrix splitting iteration for computing PageRank. J. Comput. Appl. Math. 315, 87–97 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gu, C.Q., Wang, L.: On the multi-splitting iteration method for computing PageRank. J. Appl. Math. Comput. 42, 479–490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Trans. Internet Technol. 5, 92–128 (2005)

    Article  Google Scholar 

  9. Huang, N., Ma, C.F.: Parallel multisplitting iteration methods based on M-splitting for the PageRank problem. Appl. Math. Comput. 271, 337–343 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Kamvar, S., Haveliwala, T., Manning, C., Golub, G.: Extrapolation methods for accelerating PageRank computations. In: Proceedings of the 12th International World Web Conference. pp. 261–270, ACM, New York (2003)

  11. Gu, C.Q., Xie, F., Zhang, K.: A two-step matrix splitting iteration for computing PageRank. J. Comput. Appl. Math. 278, 19–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hadjimos, A.: Accelerated overrelaxation method. Math. Comp. 32, 149–157 (1978)

    Article  MathSciNet  Google Scholar 

  13. Song, Y.Z.: On the convergence of the MAOR method. J. Comput. Appl. Math. 79, 299–317 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shen, Z.L., Huang, T.Z., Carpentieri, B., Gu, X.M., Wen, C.: An efficient elimination strategy for solving PageRank problems. Appl. Math. Comput. 298, 111–122 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Langville, A.N., Meyer, C.D., PageRank, Googles: Beyond The Science of Search Engine Rankings. Princeton University Press, Princeton (2006)

    Book  MATH  Google Scholar 

  16. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn., pp 330–332. The Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  17. Brezinski, C., Redivo-Zaglia, M.: The PageRank vector: properties, computation, approximation, and acceleration. SIAM J. Matrix Anal. Appl. 28, 551–575 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gu, C.Q., Jiang, X.L., Nie, Y., Chen, Z.B.: A preprocessed multi-step splitting iteration for computing PageRank. Appl. Math. Comput. 338, 87–100 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Gu, C.Q., Jiang, X.L., Shao, C., Chen, Z.B.: A GMRES-Power algorithm for computing PageRank problems. J. Comput. Appl. Math. 343, 113–123 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Varga, R.S.: Matrix Iterative Analysis, pp 63–143. Springer, Berlin Heidelberg (2000)

    Book  Google Scholar 

  21. Berkhin, P.: A survey on PageRank computing. Internet Math. 2, 73–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gu, C.Q., Wang, W.W.: An Arnoldi-Inout algorithm for computing PageRank problems. J. Comput. Appl. Math. 309, 219–229 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Langville, A., Meyer, C.: Deeper inside PageRank. Internet Math. 1, 335–380 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gleich, D.F., Gray, A.P., Greif, C., Lau, T.: An inner-outer iteration method for computing PageRank. SIAM J. Sci. Comput. 32, 349–371 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tian, M.Y., Zhang, Y., Wang, Y.D., Tian, Z.L.: A general multi-splitting iteration method for computing PageRank. Comp. Appl. Math. 38, 60 (2019). https://doi.org/10.1007/s40314-019-0830-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Berman, A., Plemmons, R.J.: Nonnegative matrices in the mathematical sciences. Academic Press, NewYork (1979)

    MATH  Google Scholar 

  27. Demmel, J.W.: Applied numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  28. Wu, G., Wei, Y.M.: A Power-Arnoldi algorithm for computing pagerank. Numer. Linear Algebra Appl. 14, 521–546 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Migallón, H., Migallón, V., Palomino, J.A., Penadés, J.: A heuristic relaxed extrapolated algorithm for accelerating PageRank. Adv. Eng. Softw. 000, 1–8 (2016)

    Google Scholar 

  30. Migallón, H., Migallón, V., Penadés, J.: Parallel two-stage algorithms for solving the PageRank problem. Adv. Eng. Softw. 25, 188–199 (2018)

    Article  MATH  Google Scholar 

  31. Tian, Z.L., Tian, M.Y., Liu, Z.Y., Xu, T.Y.: The Jacobi and Gauss-Seidel-type iteration methods for the matrix equation AXB = C. Appl. Math. Comput. 292, 63–75 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Saad, Y.: Iterative methods for sparse linear systems. Soc. Ind. Appl. Math. US (2000)

  33. Kamvar, S.D., Haveliwala, T.H., Golub, G.: Adaptive methods for the computation of PageRank. Linear Algebra Appl. 386, 51–65 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, G., Wei, Y.M.: An Arnoldi-extrapolation algorithm for computing PageRank. J. Comput. Appl. Math. 234, 3196–3212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Njeru, P.N., Guo, X.P.: Accelerated SOR-like method for augmented linear systems. BIT Numer. Math. 56(2), 557–571 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, W.X., Zhou, D.: Coupled iterative algorithms based on optimisation for solving Sylvester matrix equations. IET Control Theory Appl. 13, 584–593 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shepelyansky, D.L., Zhirov, D.V.: Towards Google matrix of brain. Phys. Lett. A. 374, 3206–3209 (2010)

    Article  MATH  Google Scholar 

  38. Zuo, X.N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F.X., Sporns, O., Milham, M.P.: Network centrality in the human functional connectome. Cereb Cortex. 22, 1862–1875 (2012)

    Article  Google Scholar 

  39. Pedroche, F.: , Competitivity groups on social network sites. Math. Comput. Model. 52, 1052–1057 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Amodio, P., Brugnano, L.: Recent advances in bibliometirc indexes and the PageRank problem. J. Comput. Appl. Math. 267, 182–194 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sidi, A.: Vector extrapolation methods with applications to solution of large systems of equations and to PageRank computations. Comput. Math. Appl. 56, 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shen, Z.L., Huang, T.Z., Carpentieri, B., Wen, C., Gu, X.M., Tan, X.Y.: Off-diagonal low-rank preconditioner for difficult PageRank problems. J. Comput. Appl. Math. 346, 456–470 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jia, Z.X.: Refined iterative algorithms based on Arnoldis process for large unsymmetric eigenproblems. Linear Algebra Appl. 259, 1–23 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Morgan, R., Zeng, M.: A harmonic restarted Arnoldi algorithm for calculating eigenvalues and determining multiplicity. Linear Algebra Appl. 415, 96–113 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Tian, Z.L., Liu, X.Y., Wang, Y.D., Wen, P.H.: The modified matrix splitting iteration method for computing PageRank problem. Filomat. 33, 725–740 (2019)

    Article  MathSciNet  Google Scholar 

  46. Bai, Z.Z., Wang, Z.Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428, 2900–2932 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. Golub, G.H., Greif, C.: An Arnoldi-type algorithm for computing PageRank. BIT 46, 759–771 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hu, Q.Y., Wen, C., Huang, T.Z., Shen, Z.L., Gu, X.M.: A variant of the Power-Arnoldi algorithm for computing PageRank. J. Comput. Appl. Math. 381, 113034 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tian, Z.L., Zhang, Y., Wang, J.X., Gu, C.Q.: Several relaxed iteration methods for computing PageRank. J. Comput. Appl. Math. 388, 113295 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China (Grant No. 12071335), Teaching Reform and Innovation Project of Shanxi University of Finance and Economics (2019112), and Teaching Reform and Innovation Project of Higher Education in Shanxi Province (J2019109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolu Tian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Liu, Z. & Dong, Y. The coupled iteration algorithms for computing PageRank. Numer Algor 89, 1603–1637 (2022). https://doi.org/10.1007/s11075-021-01166-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01166-x

Keywords

Mathematics Subject Classification (2010)