Skip to main content

Advertisement

Log in

Structured backward error analysis for a class of block three-by-three saddle point problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Recently, a number of efficient iteration methods for the solution of a special class of block 3 × 3 saddle point systems have been proposed by some authors. In order to easily evaluate the strong stability of these numerical algorithms and provide a practical and reliable termination criterion, in this paper, we perform the structured backward error analysis for this type of block 3 × 3 saddle point system and present an explicit and computable formula of the normwise structured backward error. Some numerical experiments are performed to demonstrate that our results can be used to easily test the stability of running algorithms, and the new stopping criterion based on the derived structured backward error is more suitable and efficient than the commonly used residue-based one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Axelsson, O.: Unified analysis of preconditioning methods for saddle point matrices. Numer. Linear Algebra Appl. 22, 233–253 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bai, Z.Z., Wang, Z.Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428, 2900–2932 (2008)

    Article  MathSciNet  Google Scholar 

  3. Bank, R.E., Welfert, B.D., Yserentant, H.A.: Class of iterative methods for solving saddle point problems. Numer. Math. 56, 645–666 (1990)

    Article  MathSciNet  Google Scholar 

  4. Benzi, M., Golub, G.H.A.: Preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26, 20–41 (2004)

    Article  MathSciNet  Google Scholar 

  5. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  Google Scholar 

  6. Bramble, J.H., Pasciak, J.E., Vassilev, A.T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34, 1072–1092 (1997)

    Article  MathSciNet  Google Scholar 

  7. Bunch, J.R., Demmel, W.J., Van Loan, C.F.: The strong stability of algorithms for solving symmetric linear systems. SIAM J. Matrix Anal. Appl. 10(4), 494–499 (1989)

    Article  MathSciNet  Google Scholar 

  8. Cao, Y.: Shift-splitting preconditioners for a class of block three-by-three saddle point problems. Appl. Math. Lett. 96, 40–46 (2019)

    Article  MathSciNet  Google Scholar 

  9. Cao, Y., Ren, Z.R., Shi, Q.A., simplified, H.S.S.: Preconditioner for generalized saddle point problems. BIT Numer. Math. 56, 423–439 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chang, X.W., Paige, C.C., Titley-Peloquin, D.: Stopping criteria for the iterative solution of linear least squares problems. SIAM J. Matrix Anal. Appl. 31(2), 831–852 (2009)

    Article  MathSciNet  Google Scholar 

  11. Chao, Z., Zhang, N.M.A., generalized preconditioned, H.S.S.: Method for singular saddle point problems. Numer. Algor. 66, 203–221 (2014)

    Article  Google Scholar 

  12. Chen, X.S., Li, W., Chen, X.J., Liu, J.: Structured backward errors for generalized saddle point systems. Linear Algebra Appl. 436(9), 3109–3119 (2012)

    Article  MathSciNet  Google Scholar 

  13. Chen, Z.M., Du, Q., Zou, J.: Nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Finite Element Meth Match Anal. 37(5), 1542–1570 (2000)

    MATH  Google Scholar 

  14. Elman, H.C., Golub, G.H.: Preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer Inexact Anal. 31, 1645–1661 (1994)

    Article  MathSciNet  Google Scholar 

  15. Fan, H.T., Zheng, B.: Modified SIMPLE Preconditioners for saddle point problems from steady incompressible Navier-Stokes equations. J. Comput. Appl. Math. 365, Article number: 112360 (2020)

  16. Fan, H.T., Zheng, B., Zhu, X.Y.: Skew-Hermitian splitting preconditioner for non-Hermitian generalized saddle point problems. Numer. Relaxed Posit. Semi-Def. Algor. 72, 813–834 (2016)

    Article  Google Scholar 

  17. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  18. Golub, G.H., Wu, X., Yuan, J.Y.: SOR-Like methods for augmented systems. BIT Numer. Math. 41, 71–85 (2001)

    Article  MathSciNet  Google Scholar 

  19. Han, D.R., Yuan, X.M.: Local linear convergence of the alternating direction method of multipliers for quadratic programs. SIAM J. Numer. Anal. 51(6), 3446–3457 (2013)

    Article  MathSciNet  Google Scholar 

  20. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)

    Book  Google Scholar 

  21. Hu, K.B., Xu, J.C.: Structure-preserving finite element methods for stationary MHD models. Math. Comput. 88(316), 553–581 (2019)

    Article  MathSciNet  Google Scholar 

  22. Hu, Q., Zou, J.: An iterative method with variable relaxation parameters for saddle-point problems. SIAM J. Matrix Anal. Appl. 23, 317–338 (2001)

    Article  MathSciNet  Google Scholar 

  23. Huang, N.: Variable parameter Uzawa method for solving a class of block three-by-three saddle point problems. Numer. Algor. 85(4), 1233–1254 (2020)

    Article  MathSciNet  Google Scholar 

  24. Huang, N., Dai, Y.H., Hu, Q.Y.: Uzawa methods for a class of block three-by-three saddle-point problems. Numer. Linear Algebra Appl. 26 (6), e2265 (2019)

    Article  MathSciNet  Google Scholar 

  25. Huang, N., Ma, C.F.: Spectral analysis of the preconditioned system for the 3 × 3 block saddle point problem. Numer. Algor. 81(2), 421–444 (2019)

    Article  MathSciNet  Google Scholar 

  26. Ke, Y.F., Ma, C.F.: An inexact modified relaxed splitting preconditioner for the generalized saddle point problems from the incompressible Navier-Stokes equations. Numer. Algor. 75, 1103–1121 (2017)

    Article  MathSciNet  Google Scholar 

  27. Ma, W.: On normwise structured backward errors for the generalized saddle point systems. Calcolo 54(2), 503–514 (2017)

    Article  MathSciNet  Google Scholar 

  28. Meng, L.S., He, Y.W., Miao, S.X.: Structured backward errors for two kinds of generalized saddle point systems. Linear Multilinear Algebra. https://doi.org/10.1080/03081087.2020.1760193 (2020)

  29. Pestana, J., Wathen, A.J.: Natural preconditioning and iterative methods for saddle point systems. SIAM Rev. 57, 71–91 (2015)

    Article  MathSciNet  Google Scholar 

  30. Rigal, J.L., Gaches, J.: On the compatibility of a given solution with the data of a linear system. J. Assoc. Comput. Mach. 14(3), 543–548 (1967)

    Article  MathSciNet  Google Scholar 

  31. Salkuyeh, D.K., Masoudi, M.A., new relaxed, H.S.S.: Preconditioner for saddle point problems. Numer. Algor. 74, 781–795 (2017)

    Article  Google Scholar 

  32. Simoncini, V., Benzi, M.: Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems. SIAM J. Matrix Anal. Appl. 26, 377–389 (2004)

    Article  MathSciNet  Google Scholar 

  33. Sun, J.G.: Structured backward errors for KKT systems. Linear Algebra Appl. 288, 75–88 (1999)

    Article  MathSciNet  Google Scholar 

  34. Sun, J.G.: Matrix Perturbation Analysis, 2nd edn. Science Press, Beijing (2001)

    Google Scholar 

  35. Xiang, H., Wei, Y.M.: On normwise structured backward errors for saddle point systems. SIAM J. Matrix Anal. Appl. 29(3), 838–849 (2007)

    Article  MathSciNet  Google Scholar 

  36. Zheng, B., Lv, P.: Structured backward error analysis for generalized saddle point problems. 46(2), Article number: 34 (2020)

  37. Zulehner, W.: Analysis of iterative methods for saddle point problems: A unified approach. Math. Comput. 71, 479–505 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the reviewers for their valuable comments and helpful suggestions, which greatly improve the presentation of this paper.

Funding

This work was supported by the National Natural Science Foundation of China (12071196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Zheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, P., Zheng, B. Structured backward error analysis for a class of block three-by-three saddle point problems. Numer Algor 90, 59–78 (2022). https://doi.org/10.1007/s11075-021-01179-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01179-6

Keywords

Mathematics Subject Classification (2010)