Skip to main content
Log in

A feasible proximal bundle algorithm with convexification for nonsmooth, nonconvex semi-infinite programming

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We propose a new numerical method for semi-infinite optimization problems whose objective function is a nonsmooth function. Existing numerical methods for solving semi-infinite programming (SIP) problems make strong assumptions on the structure of the objective function, e.g., differentiability, or are not guaranteed to furnish a feasible point on finite termination. In this paper, we propose a feasible proximal bundle method with convexification for solving this class of problems. The main idea is to derive upper bounding problems for the SIP by replacing the infinite number of constraints with a finite number of convex relaxation constraints, introduce improvement functions for the upper bounding problems, construct cutting plane models of the improvement functions, and reformulate the cutting plane models as quadratic programming problems and solve them. The convex relaxation constraints are constructed with ideas from the α BB method of global optimization. Under mild conditions, we showed that every accumulation point of the iterative sequence is an 𝜖-stationary point of the original SIP problem. Under slightly stronger assumptions, every accumulation point of the iterative sequence is a local solution of the original SIP problem. Preliminary computational results on solving nonconvex, nonsmooth constrained optimization problems and semi-infinite optimization problems are reported to demonstrate the good performance of the new algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, α BB, for general twice-differentiable constrained NLPs-I: theoretical advances. Comput. Chem. Eng. 22, 1137–1158 (1998)

    Article  Google Scholar 

  2. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, α BB, for general twice-differentiable constrained NLPs-II: implementation and computational results. Comput. Chem. Eng. 22, 1159–1179 (1998)

    Article  Google Scholar 

  3. Bagirov, A., Karmitsa, N., Mäkelä, M. M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Cham (2014)

    Book  Google Scholar 

  4. Bhattacharjee, B., Green, Jr.W. H., Barton, P.I.: Interval methods for semi-infinite programs. Comput. Optim. Appl. 30, 63–93 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bhattacharjee, B., Lemonidis, P., Green, W.H. Jr., Barton, P.I.: Global solution of semi-infinite programs. Math. Program. 103, 283–307 (2005)

    Article  MathSciNet  Google Scholar 

  6. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  7. Daniilidis, A., Georgiev, P.: Approximate convexity and submonotonicity. J. Math. Anal. Appl. 291 (1), 292–301 (2004)

    Article  MathSciNet  Google Scholar 

  8. Djelassi, H., Mitsos, A.: A hybrid discretization algorithm with guaranteed feasibility for the global solution of semi-infinite programs. J Glob Optim. 68, 227–253 (2017)

    Article  MathSciNet  Google Scholar 

  9. Floudas, C.A., Stein, O.: The adaptive convexification algorithm: a feasible point method for semi-infinite programming. SIAM J. Optim. 18, 1187–1208 (2007)

    Article  MathSciNet  Google Scholar 

  10. Fuduli, A., Gaudioso, M., Giallombardo, G., Miglionico, G.: A partially inexact bundle method for convex semi-infinite minmax problems. Commun. Nonlinear Sci. Numer. Simul. 21, 172–180 (2015)

    Article  MathSciNet  Google Scholar 

  11. Gustafson, S.-Å., Kortanek, K.: Semi-infinite programming and applications. In: Mathematical Programming The State of the Art, pp 132–157. Springer, Berlin (1983)

  12. Hare, W., Sagastizábal, C.: A redistributed proximal bundle method for nonconvex optimization. SIAM J. Optim. 20 (5), 2442–2473 (2010)

    Article  MathSciNet  Google Scholar 

  13. Hare, W., Sagastizábal, C., Solodov, M.: A proximal bundle method for nonsmooth nonconvex functions with inexact information. Comput. Optim. Appl. 63, 1–28 (2016)

    Article  MathSciNet  Google Scholar 

  14. Hettich, R.: An implementation of a discretization method for semi-infinite programming. Math. Program. 34 (3), 354–361 (1986)

    Article  MathSciNet  Google Scholar 

  15. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. Soc. Ind. Appl. Math. 35 (3), 380–429 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Hoseini Monjezi, N., Nobakhtian, S.: A filter proximal bundle method for nonsmooth nonconvex constrained optimization. J. Glob. Optim. (2020)

  17. Hoseini Monjezi, N., Nobakhtian, S.: A new infeasible proximal bundle algorithm for nonsmooth nonconvex constrained optimization. Comput Optim Appl. 74, 443–480 (2019)

    Article  MathSciNet  Google Scholar 

  18. Karas, E., Ribeiro, A., Sagastizábal, C., Solodov, M.: A bundle-filter method for nonsmooth convex constrained optimization. Math. Program. 116, 297–320 (2009)

    Article  MathSciNet  Google Scholar 

  19. Karmitsa, N.: Test problems for large-scale nonsmooth minimization. Reports of the Department of Mathematical Information Technology, Series B, Scientific computing, No. B 4/2007 (2007)

  20. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization, vol. 1133. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  21. Kortanek, K.O., No, H.: A central cutting plane algorithm for convex semi-infinite programming problems. SIAM J. Optim. 3 (4), 901–918 (1993)

    Article  MathSciNet  Google Scholar 

  22. López, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180 (2), 491–518 (2007)

    Article  MathSciNet  Google Scholar 

  23. Lv, J., Pang, L.P., Meng, F.Y.: A proximal bundle method for constrained nonsmooth nonconvex optimization with inexact information. J. Global Optim. 70, 517–549 (2018)

    Article  MathSciNet  Google Scholar 

  24. Lv, J., Pang, L.P., Xu, N., Xiao, Z.H.: An infeasible bundle method for nonconvex constrained optimization with application to semi-infinite programming problems. Numer. Algorithms 80, 397–427 (2019)

    Article  MathSciNet  Google Scholar 

  25. Meng, F.Y., Pang, L.P., Lv, J., Wang, J.H.: An approximate bundle method for solving nonsmooth equilibrium problems. J. Global Optim. 68, 537–562 (2017)

    Article  MathSciNet  Google Scholar 

  26. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SAIM J. Control Optim. 15 (6), 959–972 (1977)

    Article  MathSciNet  Google Scholar 

  27. Mitsos, A.: Global optimization of semi-infinite programs via restriction of the right-hand side. Optimization 60 (10-11), 1291–1308 (2011)

    Article  MathSciNet  Google Scholar 

  28. Mitsos, A., Djelassi, H.: A Test Set of Semi-Infinite Programs. Process Systems Engineering (AVT.SVT), RWTH Aachen University, Aachen, Germany. http://web.mit.edu/mitsos/www/pubs/siptestset.pdf (2016)

  29. Mitsos, A., Lemonidis, P., Lee, C.K., Barton, P.I.: Relaxation-based bounds for semi-infinite programs. SIAM J. Optim. 19, 77–113 (2007)

    Article  MathSciNet  Google Scholar 

  30. Mitsos, A., Tsoukalas, A.: Global optimization of generalized semi-infinite programs via restriction of the right hand side. J. Glob. Optim. 61 (1), 1–17 (2015)

    Article  MathSciNet  Google Scholar 

  31. Pang, L.P., Lv, J., Wang, J.H.: Constrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problems. Comput. Optim. Appl. 64 (2), 433–465 (2016)

    Article  MathSciNet  Google Scholar 

  32. Pang, L., Wu, Q., Wang, J., et al.: A discretization algorithm for nonsmooth convex semi-infinite programming problems based on bundle methods. Comput Optim Appl. 76, 125–153 (2020)

    Article  MathSciNet  Google Scholar 

  33. Polyak, B.T.: Introduction to Optimization. Optimization Software, Inc., Publications Division, New York (1987)

    MATH  Google Scholar 

  34. Rustem, B., Nguyen, Q.: An algorithm for the inequality-constrained discrete min-max problem. SIAM J. Optim. 8, 265–283 (1998)

    Article  MathSciNet  Google Scholar 

  35. Sagastizábal, C., Solodov, M.: An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter. SIAM J. Optim. 16 (1), 146–169 (2005)

    Article  MathSciNet  Google Scholar 

  36. Shiu, T.J., Wu, S.Y.: Relaxed cutting plane method with convexification for solving nonlinear semi-infinite programming problems. Comput Optim Appl. 53, 91–113 (2012)

    Article  MathSciNet  Google Scholar 

  37. Spingarn, J.E.: Submonotone subdifferentials of Lipschitz functions. Trans. Am. Math. Soc. 264, 77–89 (1981)

    Article  MathSciNet  Google Scholar 

  38. Stein, O., Steuermann, P.: The adaptive convexification algorithm for semi-infinite programming with arbitrary index sets. Math. Program. 136, 183–207 (2012)

    Article  MathSciNet  Google Scholar 

  39. Still, G.: Discretization in semi-infinite programming: the rate of convergence. Math. Programm. 91 (1), 53–69 (2001)

    Article  MathSciNet  Google Scholar 

  40. Tang, C., Liu, S., Jian, J., et al.: A feasible SQP-GS algorithm for nonconvex, nonsmooth constrained optimization. Numer Algor. 65, 1–22 (2014)

    Article  MathSciNet  Google Scholar 

  41. Wang, S.X., Yuan, Y.X.: Feasible method for semi-infinite programs. SIAM J. Optim. 25 (4), 2537–2560 (2015)

    Article  MathSciNet  Google Scholar 

  42. Xu, M.W., Wu, S.Y., Ye, J.J.: Solving semi-infinite programs by smoothing projected gradient method. Comput. Optim. Appl. 59, 591–616 (2014)

    Article  MathSciNet  Google Scholar 

  43. Yang, Y., Pang, L., Ma, X., et al.: Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method. J Optim Theory Appl. 163, 900–925 (2014)

    Article  MathSciNet  Google Scholar 

  44. Zhang, L.P., Wu, S.Y., López, M.A.: A new exchange method for convex semi-infinite programming. SIAM J. Optim. 20 (6), 2959–2977 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Key Research and Development Projects of Shandong Province (NO. 2019GGX104089), and the Natural Science Foundation of Shandong Province (NO. ZR2019BA014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: 1: Test problems

Appendix: 1: Test problems

Problem 1

[23, 40] Dimension: n= 2, \(f(x) = 8|{x_{1}^{2}}-x_{2}|+(1-x_{1})^{2}\), \(g(x) = \max \limits \left \{\sqrt {2}x_{1},\ 2 x_{2}\right \}-1\), X = [− 2, 2]2, x0 = (1, 1)T.

Problem 2

[34] Dimension: n= 2, \(f(x) = \max \limits \left \{{{x_{1}^{2}}}+{{x_{2}^{4}}},\ (2-x_{1})^{2}+(2-x_{2})^{2},\ 2\exp (x_{2}-x_{1})\right \}\), \(g(x) = \max \limits \left \{-{{x_{1}^{4}}}-2{{x_{2}^{2}}}-1,\ 2 {{x_{1}^{3}}}-{{x_{2}^{2}}}-2.5\right \}\), X = [− 4, 4]2, x0 = (2, 2)T.

Problem 3

[34] Dimension: n= 2, \(f(x) = \max \limits \left \{{{x_{1}^{2}}}+{{x_{2}^{2}}}+x_{1} x_{2},\ -{{x_{1}^{2}}}-{{x_{2}^{2}}}-x_{1} x_{2},\ \sin \limits {x_{1}},\! -\sin \limits {x_{1}},\\ \cos \limits {x_{2}},\ -\cos \limits {x_{2}}\right \}\), \(g(x) = \max \limits \left \{-{{x_{1}^{4}}}-2{{x_{2}^{2}}}-1,\ 2 {{x_{1}^{3}}}-{{x_{2}^{2}}}-2.5\right \}\), X = [− 4, 4]2, x0 = (3, 1)T.

Problem 4

[34] Dimension: n= 2, \(f(x) = \max \limits \left \{{{x_{1}^{4}}}+{{x_{2}^{2}}},\ (2-x_{1})^{2}+(2-x_{2})^{2},\ 2\exp (x_{2}-x_{1})\right \}\), \(g(x) = \max \limits \left \{{{x_{1}^{2}}}-{{x_{2}^{2}}},\ -2{{x_{1}^{3}}}-{{x_{2}^{2}}}\right \}\), X = [− 4, 4]2, x0 = (0, 1)T.

Problem 5

[34] Dimension: n= 2, \(f(x) = \max \limits \left \{{{x_{1}^{2}}}+{{x_{2}^{2}}},\ (2-x_{1})^{2}+(2-x_{2})^{2},\ 2\exp (x_{2}-x_{1})\right \}\), \(g(x) = \max \limits \left \{{x_{1}}+{x_{2}}-2,\ -{{x_{1}^{2}}}-{{x_{2}^{2}}}+2.25\right \}\), X = [− 4, 4]2, x0 = (2.1, 1.9)T.

Problem 6

[34] Dimension: n= 2, \(f(x) = \max \limits \left \{10(x_{2}-{x_{1}^{2}}),\ 10({x_{1}^{2}}-x_{2}),\ 1-x_{1},\ x_{1}-1\right \}\), \(g(x) = \max \limits \left \{100{x_{1}^{2}}+{x_{2}^{2}}-101,\ 80{x_{1}^{2}}-{x_{2}^{2}}-79\right \}\), X = [− 4, 4]2, x0 = (− 1.2, 1)T.

Problem 7

[19] Dimension: n= 20, 50, 100, 200, \(f(x) =\max \limits \left \{{\sum }_{i=1}^{n-1}({x_{i}^{2}}+(x_{i+1}-1)^{2}+x_{i+1}-1)\right .\), \(~~~~~~~~~~~~~\left .{\sum }_{i=1}^{n-1}(-{x_{i}^{2}}-(x_{i+1}-1)^{2}+x_{i+1}+1)\right \}\), \(g(x) = {\sum }_{i=1}^{n-1}({x_{i}^{2}}+x_{i+1}^{2}+x_{i} x_{i+1}-2x_{i}-2x_{i+1}+1.0)\), X = [− 10, 10]n, x0 = ones(n, 1).

Problem 8

[19, 40] Dimension: n= 10, 50, 100, 200, 500, 1000, \(f(x) = {\sum }_{i=1}^{n-1}(-x_{i}+2({x_{i}^{2}}+x_{i+1}^{2}-1)+1.75|{x_{i}^{2}}+x_{i+1}^{2}-1|)\), \(g(x) = {\sum }_{i=1}^{n-2}((3-2 x_{i+1})x_{i+1}-x_{i}-2x_{i+2}+2.5)\), X = [− 10, 10]n, x0 = ones(n, 1).

Problem 9

[41] Dimension: n = 2, p = 1, \(f(x) = \frac {1}{3}{x_{1}^{2}}+{x_{2}^{2}}+\frac {1}{2}x_{1}\), \(g(x,t) = (1-{x_{1}^{2}} t^{2})^{2}-x_{1} t^{2}-{x_{2}^{2}}+x_{2}\), X = [− 2, 2]2, T = [0, 1], x0 = (− 1,− 1)T.

Problem 10

[28] Dimension: n = 3, p = 1, \(f(x) = \exp (x_{1})+\exp (x_{2})+\exp (x_{3})\), g(x,t) = 1/(1 + t2) − x1x2tx3t2, X = [− 2, 2]3, T = [0, 1], x0 = (1, 1, 1)T.

Problem 11

[28] Dimension: n = 3, p = 1, f(x) = x1 + x2/2 + x3/3, \(g(x,t) = \exp (t-1)-x_{1} -x_{2} t-x_{3} t^{2}\), X = [− 2, 2]3, T = [0, 1], x0 = (1, 1, 1)T.

Problem 12

[41] Dimension: n = 3, p = 1, \(f(x) = {x_{1}^{2}}+{x_{2}^{2}}+{x_{3}^{2}}\), \(g(x,t) = x_{1} +x_{2}\exp (x_{3} t)+\exp (2t)-2\sin \limits (4t)\), X = [− 4, 2]3, T = [0, 1], x0 = (1, 1, 1)T.

Problem 13

[31, 32] Dimension: n = 3, p = 2, f(x) = |x1| + |x2| + |x3|, \(g(x,t) = x_{1}+x_{2}\exp (x_{3} t)-\exp (2x_{1} t)+\sin \limits (4 t)\), X = [− 1, 1]3, T = [0, 1], x0 = ones(3, 1).

Problem 14

[31, 32] Dimension: n = 3, p = 2, f(x) = |x1| + |x2| + |x3|, \(g(x,t) = x_{1}+x_{2}\exp (x_{3} t_{1})-\exp (2 t_{2})+\sin \limits (4 t_{1})\), X = [− 1, 1]3, T = [0, 1]2, x0 = ones(3, 1).

Problem 15

[31, 32] Dimension: n = 4, p = 2, f(x) = 1/2(|x1| + |x2| + |x3| + |x4|), \(g(x,t) = \sin \limits (t_{1} t_{2})-x_{1}-x_{2} t_{1}-x_{3} t_{2}-x_{4} t_{1} t_{2}\), X = [− 4, 4]6, T = [0, 1]2, x0 = ones(4, 1).

Problem 16

Dimension: n = 6, p = 2, \(f(x) = {\sum }_{i=1}^{n-1}(-x_{i}+2({x_{i}^{2}}+x_{i+1}^{2}-1)+1.75|{x_{i}^{2}}+x_{i+1}^{2}-1|)\), \(g(x,t) = \sin \limits (t_{1} t_{2})-x_{1}-x_{2} t_{1}-x_{3} t_{2}-x_{4} {t_{1}^{2}}-x_{5} t_{1} t_{2}-x_{6} {t_{2}^{2}}\), X = [− 4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Problem 17

Dimension: n = 6, p = 2, \(f(x) = {\sum }_{i=1}^{n-1}(-x_{i}+2({x_{i}^{2}}+x_{i+1}^{2}-1)+1.75|{x_{i}^{2}}+x_{i+1}^{2}-1|)\), \(g(x,t) = (1+{t_{1}^{2}}+{t_{2}^{2}})^{2}-x_{1}-x_{2} t_{1}-x_{3} t_{2}-x_{4} {t_{1}^{2}}-x_{5} t_{1} t_{2}-x_{6} {t_{2}^{2}}\), X = [− 4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Problem 18

Dimension: n = 6, p = 2, \(f(x) = {\sum }_{i=1}^{n-1}\max \limits \left \{{x_{i}^{2}}+(x_{i+1}-1)^{2}+x_{i+1}-1,\ -{x_{i}^{2}}-(x_{i+1}-1)^{2}+x_{i+1}+1\right \}\), \(g(x,t) = \exp ({t_{1}^{2}}+{t_{2}^{2}})-x_{1}-x_{2} t_{1}-x_{3} t_{2}-x_{4} {t_{1}^{2}}-x_{5} t_{1} t_{2}-x_{6} {t_{2}^{2}}\), X = [− 4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Problem 19

Dimension: n = 6, p = 2, \(f(x) = {\sum }_{i=1}^{n-1}\max \limits \left \{{x_{i}^{2}}+(x_{i+1}-1)^{2}+x_{i+1}-1,\ -{x_{i}^{2}}-(x_{i+1}-1)^{2}+x_{i+1}+1\right \}\), \(g(x,t) = \sin \limits (t_{1} t_{2})-x_{1}-x_{2} t_{1}-x_{3} t_{2}-x_{4} {t_{1}^{2}}-x_{5} t_{1} t_{2}-x_{6} {t_{2}^{2}}\), X = [− 4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Problem 20

Dimension: n = 6, p = 2, \(f(x) = {\sum }_{i=1}^{n-1}\max \limits \left \{{x_{i}^{2}}+(x_{i+1}-1)^{2}+x_{i+1}-1,\ -{x_{i}^{2}}-(x_{i+1}-1)^{2}+x_{i+1}+1\right \}\), \(g(x,t) = (1+{t_{1}^{2}}+{t_{2}^{2}})^{2}-x_{1}-x_{2} t_{1}-x_{3} t_{2}-x_{4} {t_{1}^{2}}-x_{5} t_{1} t_{2}-x_{6} {t_{2}^{2}}\), X = [− 4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Problem 21

Dimension: n = 6, p = 2,

\(f(x)\! =\! \max \limits \left \{{\sum }_{i=1}^{n-1}({x_{i}^{2}}+(x_{i+1}-1)^{2}+x_{i+1}-1)\right .\), \(~~~~~~~~~~~~~~~~~\left .{\sum }_{i=1}^{n-1}(-{x_{i}^{2}}-(x_{i+1}-1)^{2}+x_{i+1}+1)\right \}\),

\(g(x,t) = \sin \limits (t_{1} t_{2})-x_{1}-x_{2} t_{1}-x_{3} t_{2}-x_{4} {t_{1}^{2}}-x_{5} t_{1} t_{2}-x_{6} {t_{2}^{2}}\),

X = [− 4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Problem 22

Dimension: n = 6, p = 2, \(f(x) =\max \limits \left \{\sum \limits _{i=1}^{n-1}({x_{i}^{2}}+(x_{i+1}-1)^{2}+x_{i+1}-1)\right .\), \(~~~~~~~~~~~~~\left .\sum \limits _{i=1}^{n-1}(-{x_{i}^{2}}-(x_{i+1}-1)^{2}+x_{i+1}+1)\right \}\),

\(g(x,t) = (1+{t_{1}^{2}}+{t_{2}^{2}})^{2}-x_{1}-x_{2} t_{1}-x_{3} t_{2}-x_{4} {t_{1}^{2}}-x_{5} t_{1} t_{2}-x_{6} {t_{2}^{2}}\),

X = [− 4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Problem 23

Dimension: n = 6, p = 2,

\(f(x) = \max \limits _{1\leq i\leq n }\left \{h(-{\sum }_{i=1}^{n}x_{i}),\ h(x_{i})\right \}\), where \(h(y)=\ln (|y|+1),\ \forall y\in \mathbb {R}\),

\(g(x,t) = \sin \limits (t_{1} t_{2})-x_{1}-x_{2} t_{1}-x_{3} t_{2}-x_{4} {t_{1}^{2}}-x_{5} t_{1} t_{2}-x_{6} {t_{2}^{2}}\),

X = [− 4, 4]6, T = [0, 1]2, x0 = ones(6, 1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, LP., Wu, Q. A feasible proximal bundle algorithm with convexification for nonsmooth, nonconvex semi-infinite programming. Numer Algor 90, 387–422 (2022). https://doi.org/10.1007/s11075-021-01192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01192-9

Keywords

Navigation