Skip to main content
Log in

Global error estimation for explicit second derivative general linear methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we describe an approach to estimate the global error for explicit second derivative general linear methods based on the approach which has been already used for global error estimation of explicit general linear methods. In this approach, to estimate the global error, we use the numerical solutions of pairs of second derivative general linear methods with the same order and stage order that are constructed such that their global error functions are proportional. Numerical experiments demonstrate the excellent agreement of the global error estimation with the exact one in both constant and variable stepsize environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdi, A.: Construction of high–order quadratically stable second–derivative general linear methods for the numerical integration of stiff ODEs. J. Comput. Appl. Math. 303, 218–228 (2016)

    Article  MathSciNet  Google Scholar 

  2. Abdi, A., Behzad, B.: Efficient Nordsieck second derivative general linear methods: construction and implementation. Calcolo 55(28), 1–16 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Abdi, A., Braś, M., Hojjati, G.: On the construction of second derivative diagonally implicit multistage integration methods. Appl. Numer. Math. 76, 1–18 (2014)

    Article  MathSciNet  Google Scholar 

  4. Abdi, A., Conte, D.: Implementation of second derivative general linear methods. Calcolo 57(20), 1–29 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Abdi, A., Hojjati, G.: An extension of general linear methods. Numer. Algor. 57, 149–167 (2011)

    Article  MathSciNet  Google Scholar 

  6. Abdi, A., Hojjati, G.: Implementation of Nordsieck second derivative methods for stiff ODEs. Appl. Numer. Math. 94, 241–253 (2015)

    Article  MathSciNet  Google Scholar 

  7. Abdi, A., Hojjati, G.: Maximal order for second derivative general linear methods with Runge–Kutta stability. Appl. Numer. Math. 61, 1046–1058 (2011)

    Article  MathSciNet  Google Scholar 

  8. Abdi, A., Hojjati, G., Izzo, G., Jackiewicz, Z.: Global error estimation for explicit general linear methods. Numer. Algor. to appear (2021)

  9. Butcher, J.C., Hojjati, G.: Second derivative methods with RK stability. Numer. Algor. 40, 415–429 (2005)

    Article  MathSciNet  Google Scholar 

  10. Cash, J.R.: Second derivative extended backward differentiation formulas for the numerical integration of stiff systems. SIAM J. Numer. Anal. 18, 21–36 (1981)

    Article  MathSciNet  Google Scholar 

  11. Chan, R.P.K., Tsai, A.Y.J.: On explicit two-derivative Runge–Kutta methods. Numer. Algor. 53, 171–194 (2010)

    Article  MathSciNet  Google Scholar 

  12. Constantinescu, E.M.: Generalizing global error estimation for ordinary differential equations by using coupled time-stepping methods. J. Comput. Appl. Math. 332, 140–158 (2018)

    Article  MathSciNet  Google Scholar 

  13. Enright, W.H.: Second derivative multistep methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 11, 321–331 (1974)

    Article  MathSciNet  Google Scholar 

  14. Hairer, E., Lubich, C.: Asymptotic expansions of the global error of fixed-stepsize methods. Numer. Math. 45, 345–360 (1984)

    Article  MathSciNet  Google Scholar 

  15. Hairer, E., Nørsett, S.P., Wanner, G: Solving ordinary differential equations: I Nonstiff Problems. Springer-Verlag, Berlin, Heidelberg, New York (1993)

    MATH  Google Scholar 

  16. Hojjati, G., Rahimi Ardabili, M.Y., Hosseini, S.M.: New second derivative multistep methods for stiff systems. Appl. Math. Model. 30, 466–476 (2006)

    Article  Google Scholar 

  17. Jackiewicz, Z.: General linear methods for ordinary differential equations. John Wiley, Hoboken, New Jersey (2009)

    Book  Google Scholar 

  18. Movahedinejad, A., Hojjati, G., Abdi, A.: Second derivative general linear methods with inherent Runge–Kutta stability. Numer. Algor. 73, 371–96389 (2016)

    Article  MathSciNet  Google Scholar 

  19. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

    Article  MathSciNet  Google Scholar 

  20. Skeel, R.: Analysis of fixed-stepsize methods. SIAM J. Numer. Anal. 13, 664–685 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work of the first and second authors was supported by the University of Tabriz, International and Academic Cooperation Directorate, in the framework of TabrizU-300 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abdi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, A., Hojjati, G., Izzo, G. et al. Global error estimation for explicit second derivative general linear methods. Numer Algor 90, 833–850 (2022). https://doi.org/10.1007/s11075-021-01211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01211-9

Keywords

Mathematics Subject Classification (2010)