Abstract
The optimization literature is vast in papers dealing with improvements on the global convergence of augmented Lagrangian schemes. Usually, the results are based on weak constraint qualifications, or, more recently, on sequential optimality conditions obtained via penalization techniques. In this paper, we propose a somewhat different approach, in the sense that the algorithm itself is used in order to formulate a new optimality condition satisfied by its feasible limit points. With this tool at hand, we present several new properties and insights on limit points of augmented Lagrangian schemes, in particular, characterizing the strongest possible global convergence result for the safeguarded augmented Lagrangian method.

Similar content being viewed by others
Change history
20 December 2021
A Correction to this paper has been published: https://doi.org/10.1007/s11075-021-01241-3
References
Abadie, J.: On the Kuhn-Tucker Theorem. In: Abadie, J. (ed.) Programming, Nonlinear, pp 21–36. Wiley, New York (1967)
Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. 18(4), 1286–1309 (2007). https://doi.org/10.1137/060654797
Andreani, R., Cárdenas, A.R.V., Ramos, A., Ribeiro, A., Secchin, L.D.: On the convergence of augmented Lagrangian strategies for nonlinear programming. To appear in IMA Journal of Numerical Analysis (2020)
Andreani, R., Fazzio, N., Schuverdt, M., Secchin, L.: A sequential optimality condition related to the quasi-normality constraint qualification and its algorithmic consequences. SIAM J. Optim. 29(1), 743–766 (2019). https://doi.org/10.1137/17M1147330
Andreani, R., Fukuda, E.H., Haeser, G., Santos, D.O., Secchin, L.D.: Optimality conditions for nonlinear second-order cone programming and symmetric cone programming. Tech. rep. http://www.optimization-online.org/DB_HTML/2019/10/7436.html (2019)
Andreani, R., Gómez, W., Haeser, G., Mito, L.M., Ramos, A.: On optimality conditions for nonlinear conic programming. Tech. rep. http://www.optimization-online.org/DB_HTML/2020/03/7660.html (2020)
Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60(5), 627–641 (2011). https://doi.org/10.1080/02331930903578700
Andreani, R., Haeser, G., Ramos, A., Silva, P.J.S.: A second-order sequential optimality condition associated to the convergence of optimization algorithms. IMA J. Numer. Anal. 37(4), 1902–1929 (2017). https://doi.org/10.1093/imanum/drw064
Andreani, R., Haeser, G., Schuverdt, M.L., Secchin, L.D., Silva, P.J.S.: On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees. To appear in Mathematical Programming Computation. https://doi.org/10.1007/s12532-021-00207-9 (2021)
Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. 135(1), 255–273 (2012). https://doi.org/10.1007/s10107-011-0456-0
Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: Two new weak constraint qualifications and applications. SIAM J. Optim. 22(3), 1109–1135 (2012). https://doi.org/10.1137/110843939
Andreani, R., Haeser, G., Secchin, L.D., Silva, P.J.S.: New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM J. Optim. 29(4), 3201–3230 (2019). https://doi.org/10.1137/18M121040X
Andreani, R., Haeser, G., Viana, D.S.: Optimality conditions and global convergence for nonlinear semidefinite programming. Mathematical Programming. https://doi.org/10.1007/s10107-018-1354-5 (2018)
Andreani, R., Martínez, J.M., Santos, L.T.: Newton’s method may fail to recognize proximity to optimal points in constrained optimization. Math. Program. 160(1), 547–555 (2016). https://doi.org/10.1007/s10107-016-0994-6
Andreani, R., Martínez, J.M., Ramos, A., Silva, P.J.S.: A cone-continuity constraint qualification and algorithmic consequences. SIAM J. Optim. 26(1), 96–110 (2016). https://doi.org/10.1137/15M1008488
Andreani, R., Martínez, J.M., Ramos, A., Silva, P.J.S.: Strict constraint qualifications and sequential optimality conditions for constrained optimization. Math. Oper. Res. 43(3), 693–717 (2018). https://doi.org/10.1287/moor.2017.0879
Andreani, R., Martínez, J.M., Svaiter, B.F.: A new sequential optimality condition for constrained optimization and algorithmic consequences. SIAM J. Optim. 20(6), 3533–3554 (2010). https://doi.org/10.1137/090777189
Arora, J.S., Chahande, A.I., Paeng, J.K.: Multiplier methods for engineering optimization. Int. J. Numer. Methods Eng. 32(7), 1485–1525 (1991). https://doi.org/10.1002/nme.1620320706
Bertsekas, D.P., Ozdaglar, A.E.: Pseudonormality and a Lagrange multiplier theory for constrained optimization. Journal of Optimization Theory and Applications 114(2), 287–343 (2002). https://doi.org/10.1023/A:1016083601322
Birgin, E.G., Castillo, R.A., MartÍnez, J.M.: Numerical comparison of augmented Lagrangian algorithms for nonconvex problems. Comput. Optim. Appl. 31(1), 31–55 (2005). https://doi.org/10.1007/s10589-005-1066-7
Birgin, E.G., Martínez, J.M.: Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization. Comput. Optim. Appl. 51(3), 941–965 (2012). https://doi.org/10.1007/s10589-011-9396-0
Birgin, E.G., Martínez, J.M.: Practical augmented lagrangian methods for constrained optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA. https://doi.org/10.1137/1.9781611973365 (2014)
Bueno, L., Haeser, G., Lara, F., Rojas, F.: An augmented Lagrangian method for quasi-equilibrium problems. Comput. Optim. Appl. 76, 737–766 (2020). https://doi.org/10.1007/s10589-020-00180-4
Bueno, L., Haeser, G., Rojas, F.: Optimality conditions and constraint qualifications for generalized Nash equilibrium problems and their practical implications. SIAM J. Optim. 29 (1), 31–54 (2019). https://doi.org/10.1137/17M1162524
Curtis, F.E., Jiang, H., Robinson, D.P.: An adaptive augmented Lagrangian method for large-scale constrained optimization. Math. Program. 152, 201–245 (2015). https://doi.org/10.1007/s10107-014-0784-y
Feng, M., Li, S.: An approximate strong KKT condition for multiobjective optimization. TOP 26(3), 489–509 (2018). https://doi.org/10.1007/s11750-018-0491-6
Fernandez, D., Solodov, M.V.: Local convergence of exact and inexact augmented Lagrangian methods under the second-order sufficient optimality condition. SIAM J. Optim. 22(2), 384–407 (2012). https://doi.org/10.1137/10081085X
Gill, P.E., Kungurtsev, V., Robinson, D.P.: A shifted primal-dual penalty-barrier method for nonlinear optimization. SIAM J. Optim. 30 (2), 1067–1093 (2020). https://doi.org/10.1137/19M1247425
Guignard, M.: Generalized kuhn-Tucker conditions for mathematical programming problems in a Banach space. SIAM Journal on Control 7(2), 232–241 (1969). https://doi.org/10.1137/0307016
Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4(5), 303–320 (1969). https://doi.org/10.1007/BF00927673
Hestenes, M.R.: Optimization Theory: the Finite Dimensional Case. Wiley, New York (1975)
Izmailov, A.F., Solodov, M.V., Uskov, E.I.: Global convergence of augmented Lagrangian methods applied to optimization problems with degenerate constraints, including problems with complementarity constraints. SIAM J. Optim. 22(4), 1579–1606 (2012). https://doi.org/10.1137/120868359
Janin, R.: Directional derivative of the marginal function in nonlinear programming. In: Fiacco, A.V. (ed.) Sensitivity, Stability and Parametric Analysis, Mathematical Programming Studies. https://doi.org/10.1007/BFb0121214, vol. 21, pp 110–126. Springer, Berlin (1984)
Kanzow, C., Raharja, A.B., Schwartz, A.: Sequential optimality conditions for cardinality-constrained optimization problems with applications. Tech. rep. https://www.mathematik.uni-wuerzburg.de/fileadmin/10040700/paper/CC-AM-Stat-feb-12.pdf (2021)
Kanzow, C., Schwartz, A.: The price of inexactness: convergence properties of relaxation methods for mathematical programs with complementarity constraints revisited. Math. Oper. Res. 40(2), 253–275 (2015). https://doi.org/10.1287/moor.2014.0667
Kanzow, C., Steck, D.: An example comparing the standard and safeguarded augmented Lagrangian methods. Oper. Res. Lett. 45(6), 598–603 (2017). https://doi.org/10.1016/j.orl.2017.09.005
Mangasarian, O.L., Fromovitz, S.: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17(1), 37–47 (1967). https://doi.org/10.1016/0022-247X(67)90163-1
Martínez, J.M.: Otimização prática usando o lagrangiano aumentado (in portuguese). Tech. rep. https://www.ime.unicamp.br/martinez/opusculo.html (2006)
Martínez, J.M., Pilotta, E.A.: Inexact-restoration algorithm for constrained optimization. Journal of Optimization Theory and Applications 104(1), 135–163 (2000). https://doi.org/10.1023/A:1004632923654
Martínez, J.M., Svaiter, B.F.: A practical optimality condition without constraint qualifications for nonlinear programming. Journal of Optimization Theory and Applications 118(1), 117–133 (2003). https://doi.org/10.1023/A:1024791525441
Minchenko, L., Stakhovski, S.: On relaxed constant rank regularity condition in mathematical programming. Optimization 60(4), 429–440 (2011). https://doi.org/10.1080/02331930902971377
Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)
Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp 283–298. Academic Press, New York (1969)
Qi, L., Wei, Z.: On the constant positive linear dependence condition and its application to SQP methods. SIAM J. Optim. 10(4), 963–981 (2000). https://doi.org/10.1137/S1052623497326629
Ramos, A.: Mathematical programs with equilibrium constraints: a sequential optimality condition, new constraint qualifications and algorithmic consequences. Optimization Methods and Software, pp. 1–37. https://doi.org/10.1080/10556788.2019.1702661 (2019)
Rockafellar, R.T.: The multiplier method of Hestenes and Powell applied to convex programming. Journal on Optimization Theory and Applications 12, 555–562 (1973). https://doi.org/10.1007/BF00934777
Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM Journal on Control 12(2), 268–285 (1974). https://doi.org/10.1137/0312021
Acknowledgements
We would like to thank the reviewers of this paper for their many insightful suggestions.
Funding
This work has been partially supported by CEPID-CeMEAI (FAPESP 2013/07375-0), FAPES (grant 116/2019), FAPESP (grants 2018/24293-0, 2017/18308-2 and 2017/17840-2), CNPq (grants 301888/2017-5, 303427/2018-3, 404656/2018-8, 438185/2018-8 and 307270/2019-0), and PRONEX - CNPq/FAPERJ (grant E-26/010.001247/2016).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Andreani, R., Haeser, G., Mito, L.M. et al. On the best achievable quality of limit points of augmented Lagrangian schemes. Numer Algor 90, 851–877 (2022). https://doi.org/10.1007/s11075-021-01212-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-021-01212-8