Skip to main content

Advertisement

Log in

Convergence of modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we discuss the modulus-based matrix splitting iteration method for solving a class of nonlinear complementarity problems under a weakened condition, and present the general convergence conditions for the method in terms of spectral radius and matrix norm, respectively. Moreover, for some special cases of the method, we propose the concrete convergence conditions and optimal parameters. These convergence theories improve the existing results to some extent. The numerical experiments verify the validity and practicality of the presented results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xia, Z.-C., Li, C.-L.: Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem. Appl. Math. Comput. 271, 34–42 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Li, R., Yin, J.-F.: On the convergence of modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problems with H +-matrices. J. Comput. Appl. Math. 342, 202–209 (2018)

    Article  MathSciNet  Google Scholar 

  3. Huang, N., Ma, C.-F.: The modulus-based matrix splitting algorithms for a class of weakly nonlinear complementarity problems. Numer. Linear Algebra Appl. 23, 558–569 (2016)

    Article  MathSciNet  Google Scholar 

  4. Wang, G.-B., Tan, F.-P.: Modulus-based multisplitting iteration method for a class of weakly nonlinear complementarity problems. Comm. Appl. Math Comput. https://doi.org/10.1007/s42967-020-00074-6 (2020)

  5. Zhang, X., Peng, Z.: A modulus-based nonmonotone line search method for nonlinear complementarity problems. Appl. Math. Comput. https://doi.org/10.1016/j.amc.2020.125175 (2020)

  6. Hong, J.-T., Li, C.-L.: Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem. Appl. Math. Comput. 23, 629–641 (2016)

    MATH  Google Scholar 

  7. Hadjidimos, A., Lapidakis, M., Tzoumas, M.: On iterative solution for linear complementarity problem with an H+-matrix. SIAM J. Matrix Anal. Appl. 33, 97–110 (2012)

    Article  MathSciNet  Google Scholar 

  8. Cvetkovic, L., Hadjidimos, A., Kostic, V.: On the choice of parameters in MAOR type splitting methods for the linear complementarity problem. Numer. Algorithms 4, 793–806 (2014)

    Article  MathSciNet  Google Scholar 

  9. Bai, Z.-Z., Zhang, L.-L.: Modulus-based multigrid methods for linear complementarity problems. Numer Linear Algebra Appl. https://doi.org/10.1002/nla.2105 (2017)

  10. Van Bokhoven, W.M.G.: Piecewise-Linear Modelling and Analysis, Technische Hoge School, Eindhoven (1981)

  11. Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming, Heldermann Verlag, Berlin (1988)

  12. Dong, J.-L., Jiang, M.-Q.: A modified modulus method for symmetric positive-definite linear complementarity problems. Numer. Linear Algebra Appl. 16, 129–143 (2009)

    Article  MathSciNet  Google Scholar 

  13. Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)

    Article  MathSciNet  Google Scholar 

  14. Li, W.: A general modulus-based matrix splitting method for linear complementarity problems of H-matrices. Appl. Math. Lett. 26, 1159–1164 (2013)

    Article  MathSciNet  Google Scholar 

  15. Wu, X.-P., Peng, X.-F., Li, W.: A preconditioned general modulus-based matrix splitting iteration method for linear complementarity problems of H-matrices. Numer. Algorithms 79, 1131–1146 (2018)

    Article  MathSciNet  Google Scholar 

  16. Zhang, L.-L.: Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer. Algorithms 57, 83–99 (2011)

    Article  MathSciNet  Google Scholar 

  17. Zheng, N., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem. Numer. Algorithms 64, 245–262 (2013)

    Article  MathSciNet  Google Scholar 

  18. Zheng, H., Vong, S.: A modified modulus-based matrix splitting iteration method for solving implicit complementarity problems. Numer. Algorithms 82, 573–592 (2019)

    Article  MathSciNet  Google Scholar 

  19. Jia, L., Wang, X.: A generalized two-step modulus-based matrix splitting iteration method for implicit complementarity problems of H +-matrices. Filomat 33, 4875–4888 (2019)

    Article  MathSciNet  Google Scholar 

  20. Mezzadri, F., Galligani, E.: Modulus-based matrix splitting methods for a class of horizontal nonlinear complementarity problems. Numer. Algorithms 87, 667–687 (2021)

    Article  MathSciNet  Google Scholar 

  21. Zheng, H., Luo, L., Li, S.-Y.: A two-step iteration method for the horizontal nonlinear complementarity problem. Japan. J. Indust. Appl Math. https://doi.org/10.1007/s13160-021-00466-y (2021)

  22. Wu, S.-L., Guo, P.: Modulus-based matrix splitting algorithms for the quasi-complementarity problems. Appl. Numer. Math. 132, 127–137 (2018)

    Article  MathSciNet  Google Scholar 

  23. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1994)

    Book  Google Scholar 

  24. Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (2009)

    MATH  Google Scholar 

  25. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge university press, Cambridge (2012)

    Book  Google Scholar 

  26. Karamardian, S.: The complementarity problem. Math. Program. 2, 107–129 (1972)

    Article  MathSciNet  Google Scholar 

  27. Karamardian, S.: The nonlinear complementarity problem with applications, Part 2. J. Optim. Theory Appl. 4, 167–181 (1969)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks the anonymous referees for providing many useful comments and suggestions that made this paper more readable. This work was supported by the Education and Development Project of Zhaoqing (No. QJYY2020093), the Innovative Research Team Project of Zhaoqing University and the Scientific Research Ability Enhancement Program for Excellent Young Teachers of Zhaoqing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ximing Fang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X. Convergence of modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems. Numer Algor 90, 931–950 (2022). https://doi.org/10.1007/s11075-021-01215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01215-5

Keywords

Mathematics Subject Classification (2010)