Skip to main content
Log in

Completely discrete schemes for 2D Sobolev equations with Burgers’ type nonlinearity

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Inthis paper, we discuss two first-order completely discrete schemes based on Backward Euler and its linearized variant methods for the 2D Sobolev equations with Burgers’ type nonlinearity. First, we derive some a priori estimates for the semi-discrete scheme, then a priori bounds for the fully discrete scheme are obtained for the backward Euler approximation. Use of discrete Gronwall’s Lemma and Stolz-Cesaro’s classical result for sequences show that these estimates for the fully discrete scheme are valid uniformly in time. Moreover, an existence of a global attractor of a discrete dynamical system is derived. Further, optimal a priori error bounds are established, which may depend exponentially on time. It is shown that these error estimates are uniform in time under a uniqueness condition. Moreover, as the coefficient of dispersion μ in − μΔut tends to zero, both the semi-discrete and completely discrete Sobolev equations converge to the corresponding Burgers’ equation linearly with respect to μ. Finally, some numerical examples are established in support of our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arnold, D. N., Douglas, Jr., J., Thomeé, V.: Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable. Math. Comp. 36, 53–63 (1981)

  2. Cao, X., Pop, I.S.: Uniqueness of weak solutions for a pseudo-parabolic equation modeling two phase flow in porous media. Appl. Math. Lett. 46, 25–30 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chen, C., Li, K., Chen, Y., Huang, Y.: Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations. Adv. Comp. Math. 45, 611–630 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cuesta, C. M., Pop, I. S.: Numerical schemes for a pseudo-parabolic Burgers equation, discontinuous data and long-time behavior. J. Comp. Appl. Math. 224, 268–283 (2009)

    Article  Google Scholar 

  5. Dujin, C. J. V., Pieters, G. J. M., Raats, P. A. C.: Steady flows in unsaturated soils are stable. Transp. Porous Media 57, 215–244 (2004)

    Article  MathSciNet  Google Scholar 

  6. Ewing, R.E.: Numerical solution of Sobolev partial differential equations. SIAM J. Numer. Anal. 12, 345–363 (1975)

    Article  MathSciNet  Google Scholar 

  7. Ewing, R.E.: Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations. SIAM J. Numer. Anal. 15, 1125–1150 (1978)

    Article  MathSciNet  Google Scholar 

  8. Fan, Y., Pop, I. S.: A class of pseudo-parabolic equations: existence, uniqueness of weak solutions, and error estimates for the Euler-implicit discretization. Math. Methods Appl. Sci. 34, 2329–2339 (2011)

    Article  MathSciNet  Google Scholar 

  9. Kesavan, S.: Topics in functional analysis and applications. Wiley (1989)

  10. Lin, Y.p.: Galerkin methods for nonlinear Sobolev equations. Aequationes Math. 40, 54–66 (1990)

    Article  MathSciNet  Google Scholar 

  11. Lin, Y. P., Zhang, T.: Finite element methods for nonlinear Sobolev equations with nonlinear boundary condition. J. Math. Anal. Appl. 165, 180–191 (1992)

    Article  MathSciNet  Google Scholar 

  12. Liu, T., Lin, Y. -P., Rao, M., Cannon, J. R.: Finite element methods for Sobolev equations. J. Comp. Math. 20, 627–642 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Mikelic, A.: A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure. J. Differ. Eqn. 248, 1561–1577 (2010)

    Article  MathSciNet  Google Scholar 

  14. Muresan, M.: A concrete approach to classical Analysis, CMS Books in Mathematics. Canadian Mathematical Society Springer, New York (2009)

  15. Nakao, M.T.: Error estimates of a Galerkin method for some nonlinear Sobolev equations in one space dimension. Numer. Math. 47, 139–157 (1985)

    Article  MathSciNet  Google Scholar 

  16. Pany, A. K., Bajpai, S., Pani, A. K.: Optimal error estimates for semidiscrete Galerkin approximations to equations of motion described by Kelvin–Voigt viscoelastic fluid flow model. J. Comp. Appl. Math. 302, 234–257 (2016)

    Article  MathSciNet  Google Scholar 

  17. Pany, A. K., Kundu, S.: Optimal error estimates for semidiscrete Galerkin approximations to multi-dimensional Sobolev equations with Burgers’ type nonlinearity, Proceeding of the International Conference on Numerical Analysis and Optimization (NAO 2017), SQU, pp. 209–227. Springer, Muscat (2018)

  18. Pany, A. K., Bajpai, S., Mishra, S.: Semidiscrete finite element Galerkin method for multi-dimensional Sobolev Equations with Burgers type nonlinearty. Appl. Math. Comp. 387, 125113 (2020)

  19. Showalter, R.E.: A nonlinear Parabolic -Sobolev equation. J. Math. Anal. Appl. 50, 183–190 (1975)

    Article  MathSciNet  Google Scholar 

  20. Showalter, R.E.: The Sobolev equation. I. Applicable Anal. 5, 15–22 (1975)

    Article  MathSciNet  Google Scholar 

  21. Showalter, R.E.: The Sobolev equation. II. Applicable Anal. 5, 81–99 (1975)

    Article  MathSciNet  Google Scholar 

  22. Showalter, R. E.: Sobolev equations for nonlinear dispersive systems. Applicable Anal. 7, 297–308 (1975)

    Article  MathSciNet  Google Scholar 

  23. Temam, R.: Infinite dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences Series, vol. 68. Springer, New York

  24. Heywood, J. G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem part IV: Error Analysis For Second-Order Time Discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    Article  MathSciNet  Google Scholar 

  25. Wang, J., Li, Q.: Superconvergence analysis of a linearized three-step backward differential formula finite element method for nonlinear Sobolev equation. Math. Meth. Appl. Sci., 1–18 (2019)

  26. Zhao, Z., Li, H., Luo, Z.: Analysis of a space–time continuous Galerkin method for convection-dominated Sobolev equations. Comp. Math. Appl. 73, 1643–1656 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambit K. Pany.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Author contribution

Both the authors contributed equally to this manuscript.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Pany, A.K. Completely discrete schemes for 2D Sobolev equations with Burgers’ type nonlinearity. Numer Algor 90, 963–987 (2022). https://doi.org/10.1007/s11075-021-01218-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01218-2

Keywords

Navigation