Abstract
In this paper, by combining the two-grid method with a partition of unity, a local and parallel partition of unity scheme is designed and investigated for the mixed Navier-Stokes-Darcy problem. The main features of the present method are the following: (1) Once a coarse solution is derived, both the linearized Navier-Stokes and Darcy subproblems with a finer grid are independent, which allows a parallel computing with little communication; (2) a partition of unity is considered to assemble the solutions obtained from the local subdomains to arrive at a global continuous approximation; (3) a further coarse grid correction is carried out to derive optimal error bounds for the fluid velocity and piezometric head in L2-norm. Moreover, the convergence of the proposed method is shown. Some numerical experiments are reported to demonstrate the theoretical results.

Similar content being viewed by others
References
Badea, L., Discacciati, M., Quarteroni, A.: Numerical analysis of the Navier-Stokes/Darcy coupling. Numer. Math. 115(2), 195–227 (2010)
Boubendir, Y., Tlupova, S.: Domain decomposition methods for solving Stokes-Darcy problems with bondary integrals. SIAM J. Sci. Comput. 434(1), B82–B106 (2013)
Cai, M., Mu, M.: A multilevel decoupled method for a mixed Stokes/Darcy model. J. Comput. Appl. Math. 236(9), 2452–2465 (2012)
Cai, M., Mu, M., Xu, J.: Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47(5), 3325–3338 (2009)
Cai, M., Huang, P., Mu, M.: Some multilevel decoupled algorithms for a mixed Navier-Stokes/Darcy model. Adv. Comput. Math. 44, 115–145 (2018)
Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, W., Zhao, W.: Finite element approximation for Stokes-Darcy flow with the Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 47(6), 4239–4256 (2010)
Chen, W., Gunzburger, M., Hua, F., Wang, X.: A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system. SIAM J. Numer. Anal. 49(3), 1064–1084 (2011)
Chidyagwai, P., Riviere, B.: On the solution of the coupled Navier-Stokes and Darcy equations. Comput. Method. Appl. Mech. 198(47-48), 3806–3820 (2009)
Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. Ph.D. dissertation École Polytechnique fédérale de Lausanne (2004)
Du, G., Zuo, L.: Local and parallel finite element method for the mixed Navier-Stokes/Darcy model with Beavers-Joseph interface conditions. Acta Math. Sci. 37(5), 1331–1347 (2017)
Du, G., Zuo, L.: Local and parallel finite element post-processing scheme for the Stokes problem. Comput. Math. Appl. 2017(1), 129–140 (2017)
Du, G., Zuo, L.: A parallel partition of unity scheme based on Two-Grid discretizations for the Navier-Stokes problem. J. Sci. Comput. 75(3), 1445–1462 (2018)
Du, G., Zuo, L.: A two-grid parallel partition of unity finite element scheme. Numer. Algorithms 80(2), 429–445 (2019)
Du, G., Zuo, L.: A two-grid method with backtracking for the mixed Stokes/Darcy model. J. Numer. Math. 29(1), 39–46 (2021)
Du, G., Zuo, L.: Local and parallel finite element methods for the coupled Stokes/Darcy model. Numer. Algorithms 87(4), 1593–1611 (2021)
Du, G., Hou, Y., Zuo, L.: A modified local and parallel fintie element method for the mixed Stokes-Darcy model. J. Math. Anal Appl. 435 (2), 1129–1145 (2016)
Du, G., Li, Q., Zhang, Y.: A two-grid method with backtracking for the mixed Navier-Stokes/Darcy model. Numer. Meth. Part. D. E. 36(6), 1601–1610 (2020)
Du, G., Zuo, L., Zhang, Y.: A new local and parallel finite element method for the coupled Stokes-Darcy model. J. Sci Comput. 90(1), 43 (2022)
He, Y., Xu, J., Zhou, A.: Local and parallel finite element algorithms for the Navier-Stokes problem. J. Comput. Math. 24(3), 227–238 (2006)
He, Y., Xu, J., Zhou, A., Li, J.: Local and parallel finite element algorithms for the Stokes problem. Numer. Math. 109(3), 415–434 (2008)
He, X., Li, J., Lin, Y., Ming, J.: A domain decomposition method for the steady-state Navier-Stokes-Darcy model with the Beavers-Joseph interface condition. SIAM J. Sci. Comput. 37(5), S264–S290 (2015)
Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)
Hou, Y.: Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model. Appl. Math. Lett. 57, 90–96 (2016)
Hou, Y., Qin, Y.: On the solution of coupled Stokes/Darcy model with Beavers-Joseph interface condition. Comput. Math. Appl. 77(1), 50–65 (2019)
Jiang, B.: A parallel domain decomposition method for coupling of surface and groundwarter flows. Compu. Method. Appl. M. 198(9–12), 947–957 (2009)
Layton, W., Tobiska, L.: A two-level method withbacktracking for the Navier-Stokes equations. SIAM J. Numer. Anal. 35(5), 2035–2054 (1998)
Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40(6), 2195–2218 (2003)
Li, Q., Du, G.: Local and parallel finite element methods based on two-grid discretizations for the nonstationary Navier-Stokes equations. Numer. Algorithms 88(4), 1915–1936 (2021)
Li, Y., Hou, Y.: Error estimates of a Second-Order decoupled scheme for the evolutionary Stokes-Darcy system. Appl. Numer. Math. 154(129–148), 129–148 (2020)
Li, R., Gao, Y., Yan, W., Chen, Z.: A Crank-Nicolson discontinuous finite volume element method for a coupled non-stationary Stokes-Darcy problem. J. Comput. Appl. Math. 353, 86–112 (2019)
Mu, M., Xu, J.: A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45 (5), 1801–1813 (2007)
Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes-Darcy flow with the Beavers-Joseph interface conditions. SIAM J. Numer. Anal. 51(2), 813–839 (2013)
Shang, Y., He, Y.: Parallel iterative finite element algorithms based on full domain partition for the stationary Navier-Stokes equations. Appl. Numer. Math. 60(7), 719–737 (2010)
Shang, Y., He, Y., Kim, D., Zhou, X.: A new parallel finite element algorithm for the stationary Navier-Stokes equations. Finite. Elem. Anal. Des. 47(11), 1262–1279 (2011)
Song, L., Li, P., Gu, Y., Fan, C.: Generalized finite difference method for solving stationary 2D and 3D stokes equations with a mixed boundary condition. Comput. Math. Appl. 80(6), 1726–1743 (2020)
Sun, Y., Sun, W., Zheng, H.: Domain decomposition method for the fully-mixed Stokes-Darcy coupled problem. Compu. Method. Appl. Mech. 374, 113578 (2021)
Wang, X., Du, G., Zuo, L.: A novel local and parallel finite element method for the mixed Navier-Stokes-Darcy problem. Comput. Math Appl. 90 (15), 73–79 (2021)
Yu, J., Shi, F., Zheng, H.: Local and parallel finite element algorithms based on the partition of unity for the stokes problem. SIAM J. Sci. Comput. 36(5), C547–C567 (2014)
Zheng, B., Shang, Y.: Parallel iterative stabilized finite element algorithms based on the lowest equal-order elements for the stationary Navier-Stokes equations. Appl. Math. Comput. 357, 35–56 (2019)
Zheng, H., Yu, J., Shi, F.: Local and parallel finite element method based on the partition of unity for incompressible flow. J. Sci. Comput. 65 (2), 512–532 (2015)
Zheng, H., Shi, F., Hou, Y., Zhao, J., Cao, Y., Zhao, R.: New local and parallel finite element algorithm based on the partition of unity. J. Math. Anal Appl. 435(1), 1–19 (2016)
Zuo, L., Du, G.: A multi-grid technique for coupling fluid flow with porous media flow. Comput. Math. Appl. 75(11), 4012–4021 (2018)
Zuo, L., Du, G.: A parallel two-grid linearized method for the coupled Navier-Stokes-Darcy problem. Numer Algorithms 77(1), 151–165 (2018)
Funding
This work is subsidized by the National Natural Science Foundation of China (Nos. 12172202, 12001234, 11701343), the Natural Science Foundation of Shandong Province (No. ZR2021MA063), the Natural Science Foundation of Shaanxi Province (2021JQ-426) and the Scientific Research Program of Shaanxi Provincial Education Department (21JK0935).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Data availability
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Du, G., Zuo, L. Local and parallel partition of unity scheme for the mixed Navier-Stokes-Darcy problem. Numer Algor 91, 635–650 (2022). https://doi.org/10.1007/s11075-022-01276-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-022-01276-0