Abstract
This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved.





Similar content being viewed by others
References
Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60(5), 627–641 (2011)
Andreani, R., Martínez, J.M., Svaiter, B.F.: A new sequential optimality condition for constrained optimization and algorithmic consequences. SIAM J. Optim. 20(6), 3533–3554 (2010)
Andreani, R., Martínez, J.M., Ramos, A., Silva, P.J.: Strict constraint qualifications and sequential optimality conditions for constrained optimization. Math. Oper. Res. 43(3), 693–717 (2018)
Audet, C., Béchard, V., Le Digabel, S.: Nonsmooth optimization through mesh adaptive direct search and variable neighborhood search. J. Glob. Optim. 41(2), 299–318 (2008)
Audet, C., Dennis, J.E. Jr.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)
Audet, C., Dennis, J.E. Jr., Le Digabel, S.: Globalization strategies for mesh adaptive direct search. Comput. Optim. Appl. 46(2), 193–215 (2010)
Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer, Cham (2017)
Audet, C., Le Digabel, S., Tribes, C., Montplaisir, V.R.: The nomad project. software available at https://www.gerad.ca/nomad. Last access in September 11 (2019)
Audet, C., Orban, D.: Finding optimal algorithmic parameters using derivative-free optimization. SIAM J. Optim. 17(3), 642–664 (2006)
Birgin, E.G., Martínez, J.M.: Practical Augmented Lagrangian Methods for Constrained Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2014). https://doi.org/10.1137/1.9781611973365
Bourguignon, J.P., Jeltsch, R., Pinto, A., Viana, M. (eds.): Mathematics of Energy and Climate Change (International Conference and Advanced School Planet Earth, Portugal March 21–28. CIM Series in Mathematical Sciences, vol. 2013. Springer, Switzerland (2015)
Boyvalenkov, P.G., Danev, D.P., Bumova, S.P.: Upper bounds on the minimum distance of spherical codes. IEEE Trans. Informatuoi Theory 42(5), 1576–1581 (1996)
Burachik, R., Kaya, Y.: An augmented penalty function method with penalty parameter updates for nonconvex optimization. Nonlinear Anal. 75(3), 1158–1167 (2012)
Burke, J.: Calmness and exact penalization. SIAM J. Control. Optim. 29(2), 493–497 (1991)
Burke, J.V.: An exact penalization viewpoint of constrained optimization. SIAM J. Control. Optim. 29(4), 968–998 (1991)
Burke, J.V., Curtis, F.E., Lewis, A.S., Overton, M.L., Simões, L.E.A.: Gradient sampling methods for nonsmooth optimization ArXiv e-prints (2018)
Burke, J.V., Lewis, A.S., Overton, M.L.: Approximating subdifferentials by random sampling of gradients. Math. Oper. Res. 27(3), 567–584 (2002)
Burke, J.V., Lewis, A.S., Overton, M.L.: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim. 15 (3), 751–779 (2005)
Castelani, E.V., Martinez, A.L.M., Martínez, J.M., Svaiter, B.F.: Addressing the greediness phenomenon in nonlinear programming by means of proximal augmented Lagrangians. Comput. Optim. Applic. 46(2), 229–245 (2010)
Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)
Conn, A., Gould, G., Toint, P.: LANCELOT: A Fortran Package for Large-Scale Nonlinear Optimization (Release A). Springer, Berlin (1992)
Conway, J.H., Sloane, N.J.C.: Sphere Packings, Lattices and Groups. Springer, New York (1988)
Curtis, F.E., Mitchell, T., Overton, M.L.: A BFGS-SQP method for nonsmooth, nonconvex, constrained optimization and its evaluation using relative minimization profiles. Optim. Methods Softw. 32(1), 148–181 (2017)
Curtis, F.E., Overton, M.L.: A sequential quadratic programming algorithm for nonconvex, nonsmooth constrained optimization. SIAM J. Optim. 22(2), 474–500 (2012)
Dutta, J., Deb, K., Tulshyan, R., Arora, R.: Approximate KKT points and a proximity measure for termination. J. Glob. Optim. 56(4), 1463–1499 (2013)
Flatley, L.C., Theil, F.: Face-centered cubic crystallization of atomisitc configurations. Arch. Ration. Mech. Anal. 218, 363–416 (2015)
Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQP method: Global convergence. IMA J. Numer. Anal. 37(1), 407–443 (2017)
Gill, P.E., Kungurtsev, V., Robinson, D.P.: A shifted primal-dual interior method for nonlinear optimization. (Optimization Online) (2018)
Goldstein, A.A.: Optimization of Lipschitz continuous functions. Math. Program. 13(1), 14–22 (1977)
Gomes-Ruggiero, M.A., Martínez, J.M., Santos, S.A.: Spectral projected gradient method with inexact restoration for minimization with nonconvex constraints. SIAM J. Sci. Comput. 31(3), 1628–1652 (2009)
Helou, E.S., Santos, S.A., Simões, L. E. A.: On the differentiability check in gradient sampling methods. Optim. Methods Softw. 31(5), 983–1007 (2016)
Helou, E.S., Santos, S.A., Simões, L. E. A.: A new sequential optimality condition for constrained nonsmooth optimization. SIAM J. Optim. 30 (2), 1610–1637 (2020)
Jenssen, M., Joos, F., Perkins, W.: On kissing numbers and spherical codes in high dimensions. Adv. Math. 335, 307–321 (2018)
Kappel, F., Kuntsevich, A.V.: An implementation of Shor’s r-Algorithm. Comput. Optim. Appl. 15(2), 193–205 (2000)
Karas, E.W., Pilotta, E.A., Ribeiro, A.A.: Numerical comparison of merit function with filter criterion in inexact restoration algorithms using hard-spheres problems. Comput. Optim. Appl. 44, 427–441 (2009)
Kiwiel, K.C.: Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim. 18(2), 379–388 (2007)
Kovacevic, R.M., Pflug, G.C., Vespucci, M.T. (eds.): Handbook of Risk Management in Energy Production and Trading International Series in Operations Research & Management Science, vol. 199. Springer, New York (2013)
Krejiċ, N., Martínez, J.M., Mello, M.P., Pilotta, E.A.: Validation of an augmented Lagrangian algorithm with a Gauss-N,ewton Hessian approximation using a set of hard-spheres problems. Comput. Optim. Applic. 16(3), 247–263 (2000)
Kucherenko, S., Belotti, P., Liberti, L., Maculan, N.: New formulations for the kissing number problem. Discret. Appl. Math. 155, 1837–1841 (2007)
Le Digabel, S.: Algorithm 909: Nomad: Nonlinear optimization with the mads algorithm. ACM Trans. Math. Softw. 37(4), 44:1–44:15 (2011)
Loucks, D., Stedinger, J., Haith, D.: Water Resource Systems Planning and Analysis. Englewood Cliffs, New Jersey (1981)
Machado, F.C., de Oliveira Filho, F.M.: Improving the semidefinite programming bound for the kissing number by exploiting polynomial symmetry. Exp. Math., 1–8. https://doi.org/10.1080/10586458.2017.1286273 (2017)
Martínez, L., Andrade, R., Birgin, E.G., Martínez, J.M.: Packmol: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30(13), 2157–2164 (2009)
Sagastizábal, C.: Divide to conquer: Decomposition methods for energy optimization. Math. Program. 134(1), 187–222 (2012)
Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)
Acknowledgements
We are thankful to professor Ulisse Stefanelli (University of Vienna) for calling our attention to the double-kissing problem, and to the anonymous reviewers, for pointing out improvements in the presentation of our work.
Funding
This work is partially supported by Conselho Nacional de Desenvolvimento Científico eTecnolǵico (CNPq) grants 305010/2020-4 and 131634/2018-6, and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) grants 2013/07375-0, 2016/22989-2, 2018/24293-0 and 2019/18859-4.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Prado, R.W., Santos, S.A. & Simões, L.E.A. On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems. Numer Algor 91, 933–957 (2022). https://doi.org/10.1007/s11075-022-01287-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-022-01287-x
Keywords
- Nonsmooth optimization
- Nonconvex programming
- Optimality conditions
- Blackbox optimization
- Hard-sphere problems