Skip to main content
Log in

A well-conditioned method of fundamental solutions for Laplace equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The method of fundamental solutions (MFS) is a numerical method for solving boundary value problems involving linear partial differential equations. It is well-known that it can be very effective assuming regularity of the domain and boundary conditions. The main drawback of the MFS is that the matrices involved are typically ill-conditioned and this may prevent the method from achieving high accuracy. In this work, we propose a new algorithm to remove the ill-conditioning of the classical MFS in the context of the Laplace equation defined in planar domains. The main idea is to expand the MFS basis functions in terms of harmonic polynomials. Then, using the singular value decomposition and Arnoldi orthogonalization, we define well conditioned basis functions spanning the same functional space as the MFS’s. Several numerical examples show that when possible to be applied, this approach is much superior to previous approaches, such as the classical MFS or the MFS-QR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Alves, C.J.S.: On the choice of source points in the method of fundamental solutions. Eng. Anal. Bound. Elem. 33, 1348–1361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C.J.S., Antunes, P.R.S.: The method of fundamental solutions applied to the calculation of eigenfrequencies and eigenmodes of 2D simply connected shapes. Comput. Mater. Continua 2, 251–266 (2005)

    Google Scholar 

  3. Alves, C.J.S., Antunes, P.R.S.: The method of fundamental solutions applied to some inverse eigenproblems. SIAM J. Sci. Comp. 35, A1689–A1708 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alves, C.J.S., Leitão, V.M.A.: Crack analysis using an enriched MFS domain decomposition technique. Eng. Anal. Boundary Elem. 30(3), 160–6 (2006)

    Article  MATH  Google Scholar 

  5. Alves, C.J.S., Martins, N.F.M., Valtchev, S.S.: Trefftz methods with cracklets and their relation to BEM and MFS. Eng. Anal. Boundary Elem. 95, 93–104 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alves, C.J.S., Silvestre, A.L.: Density results using Stokeslets and a method of fundamental solutions for the Stokes equations. Eng. Anal. Boundary Elem. 28(10), 1245–1252 (2004)

    Article  MATH  Google Scholar 

  7. Alves, C.J.S., Valtchev, S.S.: A Kansa type method using fundamental solutions applied to elliptic PDEs. Advances in Meshfree Techniques, 241–256 (2007)

  8. Antunes, P.R.S.: Is it possible to tune a drum. J. Comput. Phys. 338, 91–106 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Antunes, P.R.S.: Reducing the ill conditioning in the Method of Fundamental Solutions. Adv. Comput. Math. 44(1), 351–365 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Antunes, P.R.S.: A numerical algorithm to reduce the ill-conditioning in meshless methods for the Helmholtz equation. Numer. Algorithms 79(3), 879–897 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Antunes, P.R.S., Valtchev, S.S.: A meshfree numerical method for acoustic wave propagation problems in planar domains with corner or cracks. J. Comput. App. Math. 234(9), 2646–2662 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Askour, O., Tri, A., Braikat, B., Zahrouni, H., Potier-Ferry, M.: Method of fundamental solutions and high order algorithm to solve nonlinear elastic problems. Eng. Anal. Boundary Elem. 89, 25–35 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227(14), 7003–26 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Berger, J.R., Karageorghis, A.: The method of fundamental solutions for layered elastic materials. Eng. Anal. Boundary Elem. 25(10), 877–86 (2001)

    Article  MATH  Google Scholar 

  15. Bogomolny, A.: Fundamental solutions method for elliptic boundary value problems. SIAM J. Numer. Anal. 22(4), 644–669 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Brubeck, P.D., Nakatsukasa, Y., Trefethen, L.N.: Vandermonde with Arnoldi, to appear in SIAM Review (2020)

  17. Chen, C.S., Cho, H.A., Golberg, M.A.: Some comments on the ill-conditioning of the method of fundamental solutions. Eng. Anal. Boundary Elem. 30, 405–410 (2006)

    Article  MATH  Google Scholar 

  18. Chen, C.S., Fan, C.M., Wen, P.H.: The method of approximate particular solutions for solving certain partial differential equations. Numer. Methods Partial Differ. Eqs. 28(2), 506–22 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, C.S., Karageorghis ahd, A., Li, Y.: On choosing the location of the sources in the MFS. Numer. Algorithms 72(1), 107–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, C.S., Reutskiy, S.Y., Rozov, V.Y.: The method of fundamental solutions and its modifications for electromagnetic field problems. Comput. Assist. Mech. Eng. Sci. 16(1), 21–33 (2009)

    MathSciNet  Google Scholar 

  21. Chen, J.T., Yang, J.-L., Lee, Y.-T., Chang, Y.-L.: Formulation of the MFS for the two-dimensional Laplace equation with an added constant and constraint. Eng. Anal. Boundary Elem. 46, 96–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, J.T., Wu, C.S., Lee, Y.T., Chen, K.H.: On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations. Comput. Math. Appl. 57, 851–79 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cheng, A.H.D., Hong, Y.: An overview of the method of fundamental solutions - Solvability, uniqueness, convergence and stability. Eng. Anal. Boundary Elem. 120, 118–152 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dou, F., Zhang, L.-P., Li, Z.-C., Chen, C.S.: Source nodes on elliptic pseudo-boundaries in the method of fundamental solutions for Laplace’s equation; selection of pseudo-boundaries. J. Comput. Appl. Math. 337, 112861 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fairweather, G., Karageorghis, A.: The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hon, Y.C., Li, M.: A discrepancy principle for the source points location in using the MFS for solving the BHCP. Int. J. Comput. Methods 6, 181–197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karageorghis, A.: A practical algorithm for determining the optimal pseudo-boundary in the method of fundamental solutions. Adv. Appl. Math. Mech. 1(4), 510–28 (2009)

    Article  MathSciNet  Google Scholar 

  28. Karageorghis, A., Lesnic, D.: The method of fundamental solutions for the Oseen steady-state viscous flow past known or unknown shapes. Numer. Methods Partial Differ. Eqs. 35(6), 2103–19 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Katsurada, M.: A mathematical study of the charge simulation method. II J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36(1), 135–162 (1989)

    MathSciNet  MATH  Google Scholar 

  30. Katsurada, M.: Charge simulation method using exterior mapping functions. Jpn. J. Ind. Appl. Math. 11(1), 47–61 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kitagawa, T.: On the numerical stability of the method of fundamental solution applied to the Dirichlet problem. Japan. J. Appl. Math. 5, 123–33 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kupradze, V.D., Aleksidze, M.A.: The method of functional equations for the approximate solution of certain boundary value problems; U.S.S.R. Comput. Math. Math. Phys. 4, 82–126 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, M., Chen, C.S., Karageorghis, A.: The MFS for the solution of harmonic boundary value problems with non-harmonic boundary conditions. Comput. Math. Appl. 66(11), 2400–24 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, Q.G., S̆arler, B.: A non-singular method of fundamental solutions for the two-dimensional steady-state isotropic thermoelasticity problems. Eng. Anal. Boundary Elem. 75, 89–102 (2017)

    Article  MathSciNet  Google Scholar 

  35. Mathon, R., Johnston, R.L.: The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 14, 638–50 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. Martins, N.F.M., Silvestre, A.L.: An iterative MFS approach for the detection of immersed obstacles. Eng. Anal. Boundary Elem. 32(6), 517–524 (2008)

    Article  MATH  Google Scholar 

  37. Ramachandran, P.A.: Method of fundamental solutions: singular value decomposition analysis. Commun. Numer. Methods Eng. 18, 789–801 (2002)

    Article  MATH  Google Scholar 

  38. Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11, 193–210 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Smyrlis, Y -S, Karageorghis, A.: Some aspects of the method of fundamental solutions for certain harmonic problems. J. Sci. Comput. 16(3), 341–71 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tsai, C.C., Young, D.L., Fan, C.M., Chen, C.W.: MFS With time-dependent fundamental solutions for unsteady Stokes equations. Eng. Anal. Boundary Elem. 30(10), 897–908 (2006)

    Article  MATH  Google Scholar 

  41. Young, D.L., Ruan, J.W.: Method of fundamental solutions for scattering problems of electromagnetic waves. Comput. Model. Eng. Sci. 7(2), 223–32 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The research was partially supported by FCT, Portugal, through the scientific project UIDB/00208/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro R. S. Antunes.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antunes, P.R.S. A well-conditioned method of fundamental solutions for Laplace equation. Numer Algor 91, 1381–1405 (2022). https://doi.org/10.1007/s11075-022-01306-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01306-x

Keywords

Navigation