Abstract
We present a derivative-free diagonal Polak–Ribière–Polyak like algorithm for solving large-scale systems of nonlinear equations. The search direction of the algorithm is obtained by incorporating a positive definite diagonal matrix with the positive Polak–Ribière–Polyak (PRP+) parameter. By employing a derivative-free line search technique, the global convergence and convergence rate of the algorithm are achieved. Numerical experiments performed on some large-scale systems of nonlinear equations demonstrated the good performance of the algorithm.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11075-022-01309-8/MediaObjects/11075_2022_1309_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11075-022-01309-8/MediaObjects/11075_2022_1309_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11075-022-01309-8/MediaObjects/11075_2022_1309_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11075-022-01309-8/MediaObjects/11075_2022_1309_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs11075-022-01309-8/MediaObjects/11075_2022_1309_Fig5_HTML.png)
Similar content being viewed by others
References
Aji, S., Kumam, P., Awwal, A.M., Yahaya, M.M., Kumam, W.: Two hybrid spectral methods with inertial effect for solving system of nonlinear monotone equations with application in robotics. IEEE Access 9, 30918–30928 (2021)
Awwal, A.M., Kumam, P., Wang, L., Huang, S., Kumam, W.: Inertial-based derivative-free method for system of monotone nonlinear equations and application, vol. 8 (2020)
Awwal, A.M., Sulaiman, I.M., Malik, M., Mamat, M., Kumam, P., Sitthithakerngkiet, K.: A spectral RMIL+ conjugate gradient method for unconstrained optimization with applications in portfolio selection and motion control. IEEE Access 9, 75398–75414 (2021)
Cheng, W.: A two-term PRP-based descent method. Numer. Funct. Anal. Optim. 28(11-12), 1217–1230 (2007)
Cheng, W., Xiao, Y., Hu, Q.J.: A family of derivative-free conjugate gradient methods for large-scale nonlinear systems of equations. J. Comput. Appl. Math. 224(1), 11–19 (2009)
De Leone, R., Gaudioso, M., Grippo, L.: Stopping criteria for linesearch methods without derivatives. Math. Program. 30(3), 285–300 (1984)
Dolan, E.D., Moré, J. J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)
Gilbert, J.C., Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2(1), 21–42 (1992)
Gomes-Ruggiero, M.A., Martínez, J.M., Moretti, A.C.: Comparing algorithms for solving sparse nonlinear systems of equations. SIAM J. Sci. Statist. Comput. 13(2), 459–483 (1992)
Grippo, L., Lucidi, S.: A globally convergent version of the Polak-Ribierè, conjugate gradient method. Math. Program. 78(3), 375–391 (1997)
Kelly, C.T.: A comparison of iteration schemes for Chandrasekhar H-equations in multigroup neutron transport. J. Math. Phys. 21, 408–409 (1980)
La Cruz, W., Martínez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems: theory and experiments. Citeseer Technical Report RT-04-08 (https://www.ime.unicamp.br/martinez/lmrreport.pdf) (2004)
Li, D.H., Fukushima, M.: A globally and superlinearly convergent Gauss–Newton-based BFGS method for symmetric nonlinear equations. SIAM J. Numer. Anal. 37(1), 152–172 (1999)
Li, D.H., Wang, X.L.: A modified Fletcher-Reeves-type derivative-free method for symmetric nonlinear equations. Numer. Algebra Control Optim. 1 (1), 71 (2011)
Li, M.: A derivative-free PRP method for solving large-scale nonlinear systems of equations and its global convergence. Optim. Methods Softw. 29(3), 503–514 (2014)
Liu, J., Li, S.: Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations. J. Ind. Manag. Optim. 13 (1), 283–295 (2017)
Mohammad, H.: A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. J. Ind. Manag. Optim. 17(1), 101–116 (2021)
Mohammad, H., Awwal, A.M., Abubakar, A.B., Ben-Musa, A.S.: On the derivative-free quasi-newton-type algorithm for separable systems of nonlinear equations. RAIRO Oper. Res. 55(6), 3293–3316 (2021)
Mohammad, H., Waziri, M.Y., Abubakar, A.B.: A derivative-Free Multivariate Spectral Projection Algorithm for Constrained Nonlinear Monotone Equations. Int. J. Appl. Comput. Math. 7(2), 1–30 (2021)
Polak, E., Ribiere, G.: Note sur la convergence de méthodes de directions conjuguées, journal=revue franċaise d’informatique et de recherche opérationnelle Sé,rie rouge 3(16), 35–43 (1969)
Polyak, B.T.: The conjugate gradient method in extremal problems. USSR Comput. Math. & Math. Phys. 9(4), 94–112 (1969)
Sun, M., Liu, J.: Three modified Polak-Ribiere-Polyak conjugate gradient methods with sufficient descent property. J. Inequal. Appl. 2015(1), 125 (2015)
Sun, M., Liu, J., Wang, Y.: Two improved conjugate gradient methods with application in compressive sensing and motion control. Mathematical Problems in Engineering (2020)
Tan, K.K., Xu, H.K.: Approximating fixed points of non-expansive mappings by the Ishikawa iteration process. J. Math. Anal. Appl. 178, 301–308 (1993)
Tarzanagh, D.A., Nazari, P., Peyghami, M.R.: A nonmonotone PRP conjugate gradient method for solving square and under-determined systems of equations. Comput. Math. Appl. 73(2), 339–354 (2017)
Yahaya, M.M., Kumam, P., Awwal, A.M., Aji, S.: A structured quasi–Newton algorithm with nonmonotone search strategy for structured NLS problems and its application in robotic motion control. J. Comput. Appl. Math. 113582, 395 (2021)
Yu, G.: A derivative-free method for solving large-scale nonlinear systems of equations. J. Ind. Manag. Optim. 6(1), 149 (2010)
Yu, G., Niu, S., Ma, J.: Multivariate spectral gradient projection method for nonlinear monotone equations with convex constraints. J. Ind. Manag. Optim. 9(1), 117–129 (2013)
Yuan, G., Li, T., Hu, W.: A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems. Appl. Numer. Math. 147, 129–141 (2020)
Yuan, G., Lu, J., Wang, Z.: The PRP conjugate gradient algorithm with a modified WWP line search and its application in the image restoration problems. Appl. Numer. Math. 152, 1–11 (2020)
Yuan, G., Lu, J., Wang, Z.: The modified PRP conjugate gradient algorithm under a non-descent line search and its application in the Muskingum model and image restoration problems. Soft. Comput. 25(8), 5867–5879 (2021)
Yuan, G., Wang, B., Sheng, Z.: The Hager–Zhang conjugate gradient algorithm for large-scale nonlinear equations. Int. J. Comput. Math. 96 (8), 1533–1547 (2019)
Yuan, G., Zhang, M.: A three-terms polak–ribiere–Polyak̀ conjugate gradient algorithm for large-scale nonlinear equations. J. Comput. Appl. Math. 286, 186–195 (2015)
Zhang, L.: A derivative-free conjugate residual method using secant condition for general large-scale nonlinear equations. Numer. Algorithms 83(4), 1277–1293 (2020)
Zhang, L., Zhou, W., Li, D.H.: A descent modified Polak–Ribiere–Polyak̀, conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26(4), 629–640 (2006)
Zhang, Y., He, L., Hu, C., Guo, J., Li, J., Shi, Y.: General four-step discrete-time zeroing and derivative dynamics applied to time-varying nonlinear optimization. J. Comput. Appl. Math. 347, 314–329 (2019)
Zhou, W.: A short note on the global convergence of the unmodified PRP method. Optim. Lett. 7(6), 1367–1372 (2013)
Zhou, W., Li, D.H.: On the convergence properties of the unmodified PRP method with a non-descent line search. Optim. Methods Softw. 29(3), 484–496 (2014)
Zhou, W., Shen, D.: An inexact PRP conjugate gradient method for symmetric nonlinear equations. Numer. Funct. Anal. Optim. 35(3), 370–388 (2014)
Zhou, W., Shen, D.: Convergence properties of an iterative method for solving symmetric non-linear equations. J. Optim. Theory Appl. 164 (1), 277–289 (2015)
Acknowledgements
The authors would like to thank the reviewers and the Editor-in-Chief for their constructive suggestions which improved the earlier version of this paper.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Data availability
The MATLAB codes for the implementation of the dprp+ algorithm are available upon request. The datasets used to plot the graphs presented in Section 4 of this paper are openly available in the corresponding author’s repository https://acrobat.adobe.com/link/track?uri=urn:aaid:scds:US:ac15dc9a-b04b-437a-b978-ca36960e0f9e.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mohammad, H., Awwal, A.M. Globally convergent diagonal Polak–Ribière–Polyak like algorithm for nonlinear equations. Numer Algor 91, 1441–1460 (2022). https://doi.org/10.1007/s11075-022-01309-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-022-01309-8