Skip to main content
Log in

Locally conservative discontinuous bubble scheme for Darcy flow and its application to Hele-Shaw equation based on structured grids

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present an algorithm to solve the Darcy flow coupled with a transport for the interface tracking and apply the algorithm to solve a Hele-Shaw flow. The main challenge in the solution of the Hele-Shaw flow can be found at the change in the jump of the pressure along with the moving interface. We notice that such a challenge can be adequately handled by maintaining the conservation of the flux. Our algorithm employs the immersed finite element method equipped with the enrichment of piecewise constants to guarantee the conservative flux while the change of the jump condition for the pressure is handled via discontinuous bubble function, non-zero only near the interface. On the other hand, the interface motion is modeled and solved by the level set framework and WENO scheme. One important advantage of the proposed scheme is that the resulting algebraic system is efficiently handled by a proven-to-be fast and optimal algorithm in time evolution. A number of numerical tests are given to demonstrate the simplicity, efficiency and robustness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Arnold, D. N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. ESAIM: Math. Model. Numer. Anal. 19, 7–32 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bank, R. E., Li, Y.: Superconvergent recovery of Raviart–Thomas mixed finite elements on triangular grids. J. Sci. Comput. 81, 1882–1905 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bastian, P., Rivière, B.: Superconvergence and H(div) projection for discontinuous galerkin methods. Int. J. Numer. Methods Fluids 42, 1043–1057 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45, 601–620 (1999)

    Article  MATH  Google Scholar 

  5. Belytschko, T., Parimi, C., Moës, N., Sukumar, N., Usui, S.: Structured extended finite element methods for solids defined by implicit surfaces. Int. J. Numer. Methods Eng. 56, 609–635 (2003)

    Article  MATH  Google Scholar 

  6. Brandts, J. H.: Superconvergence for triangular order k = 1 Raviart–Thomas mixed finite elements and for triangular standard quadratic finite element methods. Appl. Numer. Math. 34, 39–58 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, vol. 15. Springer, New York (1991)

    Book  MATH  Google Scholar 

  8. Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations. SIAM J. Numer. Anal. 49, 1761–1787 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chang, K. S., Kwak, D. Y.: Discontinuous bubble scheme for elliptic problems with jumps in the solution. Comput. Methods Appl. Mech. Eng. 200, 494–508 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chou, S. H., Kwak, D. Y., Wee, K. T.: Optimal convergence analysis of an immersed interface finite element method. Adv. Comput. Math. 33, 149–168 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Demidov, D.: Amgcl: a c++ library for solution of large sparse linear systems with algebraic multigrid method. https://github.com/ddemidov/amgcl (2017)

  12. Demidov, D.: amgcl: an efficient, flexible, and extensible algebraic multigrid implementation. Lobachevskii J. Math. 40, 535–546 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dupont, T. F., Keenan, P. T.: Superconvergence and postprocessing of fluxes from lowest-order mixed methods on triangles and tetrahedra. SIAM J. Sci. Comput. 19, 1322–1332 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Entov, V., Etingof, P.: On a generalized two-fluid hele-shaw flow. Eur. J. Appl. Math. 18, 103–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ern, A., Nicaise, S., Vohralík, M.: An accurate H(div) flux reconstruction for discontinuous galerkin approximations of elliptic problems. C. R. Math. 345, 709–712 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hou, T. Y., Li, Z., Osher, S., Zhao, H.: A hybrid method for moving interface problems with application to the Hele–Shaw flow. J. Comput. Phys. 134, 236–252 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jeon, Y., Tran, M.L.: Numerical analysis of interface hybrid difference methods for elliptic interface equations. J. Comput. Appl. Math. 377, 112869 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jeon, Y., Shin, D.: Immersed hybrid difference methods for elliptic boundary value problems by artificial interface conditions. Electron. Res. Arch. 29, 3361 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, G. -S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, G. -S., Shu, C. -W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jo, G., Kwak, D. Y.: An IMPES scheme for a two-phase flow in heterogeneous porous media using a structured grid. Comput. Methods Appl. Mech. Eng. 317, 684–701 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jo, G., Young, K. D., Lee, Y. -J.: Locally conservative immersed finite element method for elliptic interface problems. J. Sci. Comput. 87 (2021)

  23. Kim, K. -Y.: Guaranteed and asymptotically exact a posteriori error estimator for lowest-order Raviart–Thomas mixed finite element method. Appl. Numer. Math. 165, 357–375 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Krysl, P., Belytschko, T.: An efficient linear-precision partition of unity basis for unstructured meshless methods. Commun. Numer. Methods Eng. 16, 239–255 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kwak, D. Y., Wee, K. T., Chang, K. S.: An analysis of a broken p1-nonconforming finite element method for interface problems. SIAM J. Numer. Anal. 48, 2117–2134 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kwak, D. Y., Jin, S., Kyeong, D.: A stabilized p1-nonconforming immersed finite element method for the interface elasticity problems. ESAIM: Math. Model. Numer. Anal. 51, 187–207 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kwon, I., Jo, G.: A consistent discontinuous bubble scheme for elliptic problems with interface jumps. J. Korean Soc. Ind. Appl. Math. 24, 143–159 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Kwon, I., Kwak, D. Y.: Discontinuous bubble immersed finite element method for Poisson-Boltzmann equation. Commun. Comput. Phys. 25, 928–946 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kyeong, D., Kwak, D. Y.: An immersed finite element method for the elasticity problems with displacement jump. Adv. Appl. Math. Mech. 9, 407–428 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lee, L., LeVeque, R. J.: An immersed interface method for incompressible Navier–Stokes equations. Wave Motion 25, 832–856 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Lee, S., Lee, Y., Wheeler, M.: A locally conservative enriched Galerkin approximation and efficient solver for elliptic and parabolic problems. SIAM J. Sci. Comput. 38, A1404–A1429 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Legrain, G., Moes, N., Verron, E.: Stress analysis around crack tips in finite strain problems using the extended finite element method. Int. J. Numer. Methods Eng. 63, 290–314 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Leveque, R. J., Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. LeVeque, R. J., Li, Z.: Immersed interface methods for stokes flow with elastic boundaries or surface tension. SIAM J. Sci. Comput. 18, 709–735 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, Z.: Immersed interface methods for moving interface problems. Numer. Algorithms 14, 269–293 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, Z., Lin, T., Wu, X.: New cartesian grid methods for interface problems using the finite element formulation. Numer. Math. 96, 61–98 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, Z., Lin, T., Lin, Y., Rogers, R. C.: An immersed finite element space and its approximation capability. Numer. Methods Partial Differ. Equ. 20, 338–367 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lin, T., Lin, Y., Rogers, R., Ryan, M. L.: A rectangular immersed finite element space for interface problems. Adv. Comput. Theory Pract. 7, 107–114 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Lin, T., Lin, Y., Zhang, X.: Partially penalized immersed finite element methods for elliptic interface problems. SIAM J. Numer. Anal. 53, 1121–1144 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Osher, S., Shu, C. -W.: High-order essentially nonoscillatory schemes for Hamilton–Jacobi equations. SIAM J. Numer. Anal. 28, 907–922 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  42. Raviart, P. A., Thomas, J. M.: A mixed finite element method for 2-nd order elliptic problems. Mathematical aspects of finite element methods, pp. 292–315 (1977)

  43. Sun, S., Liu, J.: A locally conservative finite element method based on piecewise constant enrichment of the continuous galerkin method. SIAM J. Sci. Comput. 31, 2528–2548 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wheeler, M. F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, C., LeVeque, R. J.: The immersed interface method for acoustic wave equations with discontinuous coefficients. Wave Motion 25, 237–263 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The second author is supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2020R1C1C1A01005396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwanghyun Jo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y., Jo, G., Kwak, D.Y. et al. Locally conservative discontinuous bubble scheme for Darcy flow and its application to Hele-Shaw equation based on structured grids. Numer Algor 92, 1127–1152 (2023). https://doi.org/10.1007/s11075-022-01333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01333-8

Keywords

Mathematics Subject Classification (2010)

Navigation