Abstract
In this paper, we study a τ-preconditioner for non-symmetric linear system arising from a steady-state multi-dimensional Riemann-Liouville (RL) fractional diffusion equation. The generalized minimal residual (GMRES) method is applied to solve the preconditioned linear system. Theoretically, we show that the GMRES solver for the preconditioned linear system has a convergence rate independent of discretization stepsizes. To the best of our knowledge, this is the first iterative solver with stepsize-independent convergence rate for the non-symmetric linear system. The proposed τ-preconditioner is diagonalizable by the sine transform matrix, thanks to which the matrix-vector multiplication in each iteration step can be fast implemented by the fast sine transform (FST). Hence, the total operation cost of the proposed solver for the non-symmetric problem is linearithmic. Numerical results are reported to show the efficiency of the proposed preconditioner.

Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data availability statement
The data of codes involved in this paper are available from the corresponding author on reasonable request.
References
Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)
Bini, D., Benedetto, F.: A new preconditioner for the parallel solution of positive definite toeplitz systems. In: Proceedings of the second annual ACM Symposium on Parallel Algorithms and Architectures, pp. 220–223 (1990)
del Castillo-Negrete, D., Carreras, B., Lynch, V.: Fractional diffusion in plasma turbulence. Physics of Plasmas 11(8), 3854–3864 (2004)
Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)
Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)
Chen, W.: A speculative study of 2/ 3-order fractional laplacian modeling of turbulence: some thoughts and conjectures. Chaos:, An Interdisciplinary Journal of Nonlinear Science 16(2), 023, 126 (2006)
Dai, P., Wu, Q., Wang, H., Zheng, X.: An efficient matrix splitting preconditioning technique for two-dimensional unsteady space-fractional diffusion equations. J. Comput. Appl. Math. 371, 112, 673 (2020)
Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)
Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics Numerical Mathematics and Scie (2014)
Gu, X.M., Huang, T.Z., Zhao, Y.L., Lyu, P., Carpentieri, B.: A fast implicit difference scheme for solving the generalized time–space fractional diffusion equations with variable coefficients. Numer. Methods Partial Differ. Equ. 37(2), 1136–1162 (2021)
Hao, Z.P., Sun, Z.Z., Cao, W.R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)
Huang, X., Lin, X.L., Ng, M.K., Sun, H.W.: Spectral analysis for preconditioning of multi-dimensional riesz fractional diffusion equations. arXiv:2102.01371 (2021)
Jia, J., Wang, H., Zheng, X.: A fast collocation approximation to a two-sided variable-order space-fractional diffusion equation and its analysis. J. Comput. Appl. Math. 388, 113, 234 (2021)
Jia, J., Zheng, X., Fu, H., Dai, P., Wang, H.: A fast method for variable-order space-fractional diffusion equations. Numer. Algorithms 85(4), 1519–1540 (2020)
Jian, H.Y., Huang, T.Z., Zhao, X.L., Zhao, Y.L.: A fast implicit difference scheme for a new class of time distributed-order and space fractional diffusion equations with variable coefficients. Adv. Differ. Equ 2018(1), 1–24 (2018)
Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84(296), 2665–2700 (2015)
Jin, X.Q.: Preconditioning techniques for Toeplitz systems Higher Education Press (2010)
Jin, X.Q., Lin, F.R., Zhao, Z.: Preconditioned iterative methods for two-dimensional space-fractional diffusion equations. Commun. Comput. Phys. 18, 469–488 (2015)
Lei, S.L., Huang, Y.C.: Fast algorithms for high-order numerical methods for space-fractional diffusion equations. Int. J. Comput. Math. 94(5), 1062–1078 (2017)
Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)
Lin, X.l., Ng, M.K., Sun, H.W.: A splitting preconditioner for toeplitz-like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl. 38(4), 1580–1614 (2017)
Liu, Q., Liu, F.W., Gu, Y.T., Zhuang, P.H., Chen, J., Turner, I.: A meshless method based on point interpolation method (PIM) for the space fractional diffusion equation. Appl. Math. Comput. 256, 930–938 (2015)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)
Mittnik, S., Rachev, S.: Option pricing for stable and infinitely divisible asset returns. Math. Comput. Model. 29(10-12), 93–104 (1999)
Pan, J.Y., Ke, R.H., Ng, M.K., Sun, H.W.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36, A2698–A2719 (2014)
Pang, H.K., Sun, H.W.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)
Pang, H.K., Sun, H.W.: Fast numerical contour integral method for fractional diffusion equations. J. Sci. Comput. 66(1), 41–66 (2016)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: theory and applications switzerland: gordon and breach science publishers (1993)
Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville derivative. Appl. Numer. Math. 90, 22–37 (2015)
Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)
Wang, H., Wang, K.X., Sircar, T.: A direct \(o({N}\log ^{2} N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)
Funding
This research is supported by RGC GRF 12300519, 17201020, and 17300021.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Lin, Xl., Huang, X., Ng, M.K. et al. A τ-preconditioner for a non-symmetric linear system arising from multi-dimensional Riemann-Liouville fractional diffusion equation. Numer Algor 92, 795–813 (2023). https://doi.org/10.1007/s11075-022-01342-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-022-01342-7