Skip to main content
Log in

Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We construct and analyze a local discontinuous Galerkin (LDG) method which is combined with the locally one-dimensional method as one of the splitting methods. The proposed method reduces the size of algebraic system of equations due to the splitting technique, as a result computational time is also reduced. We are particularly interested in improving the computational efficiency in comparison to the original schemes, aiming to preserve the properties of the LDG method. We also deal with the method’s stability and convergence analyses and discuss its computational time. Finally, some numerical simulations are carried out to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Adjerid, S., Baccouch, M.: A superconvergent local discontinuous Galerkin method for elliptic problems. J. Sci. Comput. 52(1), 113–152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aguilera, A, Castillo, P, Gómez, S: Structure preserving–field directional splitting difference methods for nonlinear Schrödinger systems. Appl. Math. Lett. 119, 107211 (2021)

    Article  MATH  Google Scholar 

  3. Ahmadinia, M., Safari, Z., Fouladi, S.: Analysis of local discontinuous Galerkin method for time–space fractional convection–diffusion equations. BIT Numer. Math. 58(3), 533–554 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azerad, P., Bouharguane, A., Crouzet, J.: Simultaneous denoising and enhancement of signals by a fractal conservation law. Commun. Nonlinear Sci. Numer. Simul. 17(2), 867–881 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baccouch, M.: A superconvergent local discontinuous Galerkin method for the second-order wave equation on Cartesian grids. Comput. Math. Applic. 68(10), 1250–1278 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balmforth, N.J., Provenzale, A.: Geomorphological Fluid Mechanics, vol. 582, p 582. Verlag, Berlin (2001)

    Book  Google Scholar 

  7. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection–diffusion problems. Math. Comput. 71(238), 455–478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castillo, P., Gómez, S.: Interpolatory super-convergent discontinuous Galerkin methods for nonlinear reaction diffusion equations on three dimensional domains. Commun. Nonlinear Sci. Numer. Simul. 90, 105388 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Castillo, P., Gómez, S.: An interpolatory directional splitting-local discontinuous Galerkin method with application to pattern formation in 2D/3D. Appl. Math. Comput. 397, 125984 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Chavent, G., Cockburn, B.: The local projection p0p1-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM: Math. Modell. Numer. Anal. 23(4), 565–592 (1989)

    Article  MATH  Google Scholar 

  11. Chen, J., Ge, Y.: High order locally one-dimensional methods for solving two-dimensional parabolic equations. Adv. Diff. Equa. 2018(361), 1–17 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Ciarlet, P.G.: The finite element method for elliptic problems, vol. 40. SIAM, North–Holland (2002)

    Book  Google Scholar 

  13. Cockburn, B., Dong, B.: An analysis of the minimal dissipation local discontinuous Galerkin method for convection–diffusion problems. J. Sci. Comput. 32(2), 233–262 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39(1), 264–285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Karniadakis, G.E., Shu, C.W.: The development of discontinuous Galerkin methods. In: Discontinuous Galerkin Methods, pp. 3–50. Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berlin (2000)

  16. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (6), 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Shu, C.W.: Runge–kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong, B., Shu, C.W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47(5), 3240–3268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eymard, R., Hilhorst, D., Vohralík, M.: A combined finite volume–finite element scheme for the discretization of strongly nonlinear convection–diffusion–reaction problems on nonmatching grids. Numer. Methods Partial Diff. Equa. 26(3), 612–646 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Ganesan, S., Tobiska, L.: Operator-splitting finite element algorithms for computations of high-dimensional parabolic problems. Appl. Math. Comput. 219(11), 6182–6196 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer, New York (2007)

    MATH  Google Scholar 

  23. Hundsdorfer, W., Verwer, J.G.: Numerical solution of time-dependent advection-diffusion-reaction equations, vol. 33. Springer (2013)

  24. Janenko, N.N.: The method of fractional steps, vol. 160. Springer, Berlin (1971)

    Book  Google Scholar 

  25. Kamga, J.-B.A., Després, B.: CFL condition and boundary conditions for DGM approximation of convection-diffusion. SIAM J. Numer. Anal. 44 (6), 2245–2269 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Klingenberg, C., Schnücke, G., Xia, Y.: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws: analysis and application in one dimension. Math. Comput. 86(305), 1203–1232 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Knobloch, P., Tobiska, L.: The \({P}_{1}^{mod}\) element: A new nonconforming finite element for convection–diffusion problems. SIAM J. Numer. Anal. 41(2), 436–456 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kong, L., Zhu, P., Wang, Y., Zeng, Z.: Efficient and accurate numerical methods for the multidimensional convection–diffusion equations. Math. Comput. Simul. 162, 179–194 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. LeVeque, R.J.: Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, p. 98. SIAM (2007)

  30. Li, J., Chen, Y.T.: Computational partial differential equations using MATLAB®;. Chapman and Hall/CRC, London (2019)

    Book  Google Scholar 

  31. Li, J., Shi, C., Shu, C.W.: Optimal non-dissipative discontinuous Galerkin methods for Maxwell’s equations in Drude metamaterials. Comput. Math. Applic. 73(8), 1760–1780 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Marchuk, G.I.: Splitting and alternating direction methods, vol. 1. Elsevier (1990)

  33. Mitchell, A.R., Griffiths, D.F.: The finite difference method in partial differential equations. Wiley, New York (1980)

    MATH  Google Scholar 

  34. Qiu, J., Shu, C.W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26(3), 907–929 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schiesser, W.E., Griffiths, G.W.: A compendium of partial differential equation models: method of lines analysis with Matlab. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  36. Shen, W., Zhang, C., Zhang, J.: Relaxation method for unsteady convection–diffusion equations. Comput. Math. Applic. 61(4), 908–920 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, H., Zhang, Q., Shu, C.W.: Implicit–explicit local discontinuous Galerkin methods with generalized alternating numerical fluxes for convection–diffusion problems. J. Sci. Comput. 81(3), 2080–2114 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, H., Zhang, Q., Wang, S., Shu, C.W.: Local discontinuous Galerkin methods with explicit-implicit-null time discretizations for solving nonlinear diffusion problems. Sci. Chin. Math. 63(1), 183–204 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, T., Wang, Y.M.: A higher-order compact LOD method and its extrapolations for nonhomogeneous parabolic differential equations. Appl. Math. Comput. 237, 512–530 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Wang, Y.M.: Error and extrapolation of a compact LOD method for parabolic differential equations. J. Comput. Appl. Math. 235(5), 1367–1382 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II, vol. 375. Springer, Berlin (1996)

    MATH  Google Scholar 

  42. Xu, Y., Shu, C.W., Zhang, Q.: Error estimate of the fourth-order Runge–Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 58(5), 2885–2914 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yan, J., Shu, C.W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17(1–4), 27–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yeganeh, S., Mokhtari, R., Fouladi, S.: Using a LDG method for solving an inverse source problem of the time-fractional diffusion equation. Iranian J. Numer. Anal. Optim. 7(2), 115–135 (2017)

    MATH  Google Scholar 

  45. Yeganeh, S., Mokhtari, R., Hesthaven, J.S.: Space-dependent source determination in a time-fractional diffusion equation using a local discontinuous Galerkin method. BIT Numer. Math. 57(3), 685–707 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yeganeh, S., Mokhtari, R., Hesthaven, J.S.: A local discontinuous Galerkin method for two-dimensional time fractional diffusion equations. Commun. Appl. Math. Comput. 2, 689–709 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their deep thanks to anonymous referees for their careful reading and invaluable suggestions on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Fouladi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fouladi, S., Mokhtari, R. & Dahaghin, M.S. Operator-splitting local discontinuous Galerkin method for multi-dimensional linear convection-diffusion equations. Numer Algor 92, 1425–1449 (2023). https://doi.org/10.1007/s11075-022-01347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01347-2

Keywords

Mathematics Subject Classification (2010)

Navigation