Skip to main content

Advertisement

Log in

Supercloseness and postprocessing for linear finite element method on Bakhvalov-type meshes

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Supercloseness and postprocessing of the linear finite element method are studied on the Bakhvalov-type mesh for a singularly perturbed convection diffusion problem. Finite element analysis on this kind of mesh has always been an open problem. The difficulties arise from the width \(\mathcal {O}(\varepsilon \ln (1/\varepsilon ) )\) of subdomain for the layer and nonuniformity of meshes in the layer. A novel interpolation is introduced to address difficulties from the width of subdomain for the layer. As a result, supercloseness of order two is obtained for the linear finite element method. Based on this supercloseness result, we propose and analyze a new postprocessing operator according to the mesh’s structure. Its stability is proved by means of numerical quadrature. Then, it is proved that the numerical solution after postprocessing converges second order. Numerical experiments verify these theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Bakhvalov, N.S.: On the optimization of the methods for solving boundary value problems in the presence of a boundary layer. Zh. Vychisl. Mat. Mat. Fiz. 9, 841–859 (1969)

    MathSciNet  Google Scholar 

  2. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods Texts in Applied Mathematics, 3rd edn., vol. 15. Springer, New York (2008). https://doi.org/10.1007/978-0-387-75934-0

  4. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). https://doi.org/10.1137/1.9780898719208

    Book  Google Scholar 

  5. Franz, S., Linß, T.: Superconvergence analysis of the Galerkin FEM for a singularly perturbed convection–diffusion problem with characteristic layers. Numer. Methods Partial Diff. Equ. 24(1), 144–164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lin, Q., Yan, N., Zhou, A.: A rectangle test for interpolated finite elements. In: Proc. Syst. Sci. Eng., pp. 217–229. Great Wall (H.K.) Culture Publish Co (1991)

  7. Linß, T.: Analysis of a Galerkin finite element method on a Bakhvalov-Shishkin mesh for a linear convection-diffusion problem. IMA J. Numer. Anal. 20(4), 621–632 (2000). https://doi.org/10.1093/imanum/20.4.621

    Article  MathSciNet  MATH  Google Scholar 

  8. Linß, T.: Uniform superconvergence of a Galerkin finite element method on Shishkin-type meshes. Numer. Methods Partial Diff. Equ. 16(5), 426–440 (2000). https://doi.org/10.1002/1098-2426(200009)16:5<426::AID-NUM2>3.3.CO;2-I

  9. Linß, T.: Layer-adapted meshes for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 192(9–10), 1061–1105 (2003). https://doi.org/10.1016/S0045-7825(02)00630-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Linß, T.: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems. Lecture Notes in Mathematics, vol. 1985. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-05134-0

    Book  MATH  Google Scholar 

  11. Liu, X., Zhang, J.: Galerkin finite element methods for convection-diffusion problems with exponential layers on Shishkin triangular meshes and hybrid meshes. Appl. Math. Comput. 307, 244–256 (2017). https://doi.org/10.1016/j.amc.2017.03.003

    MathSciNet  MATH  Google Scholar 

  12. Liu, X., Zhang, J.: Uniform supercloseness of Galerkin finite element method for convection-diffusion problems with characteristic layers. Comput. Math. Appl. 75(2), 444–458 (2018). https://doi.org/10.1016/j.camwa.2017.09.028

    Article  MathSciNet  MATH  Google Scholar 

  13. Roos, H., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations Springer Series in Computational Mathematics, 2nd edn., vol. 24. Springer, Berlin (2008)

  14. Roos, H.G.: Error estimates for linear finite elements on Bakhvalov-type meshes. Appl. Math. 51(1), 63–72 (2006). https://doi.org/10.1007/s10492-006-0005-y

    Article  MathSciNet  MATH  Google Scholar 

  15. Roos, H.G., Linß, T.: Gradient recovery for singularly perturbed boundary value problems. I. One-dimensional convection-diffusion, pp. 163–178 (2001). https://doi.org/10.1007/s006070170033. Archives for scientific computing. Numerical methods for transport-dominated and related problems (Magdeburg, 1999)

  16. Roos, H.G., Linß, T.: Gradient recovery for singularly perturbed boundary value problems. II. Two-dimensional convection-diffusion. Math. Models Methods Appl. Sci. 11 (7), 1169–1179 (2001). https://doi.org/10.1142/S0218202501001288

    Article  MathSciNet  MATH  Google Scholar 

  17. Schlichting, H., Gersten, K.: Boundary-Layer Theory, 9th edn. Springer, Berlin (2017). https://doi.org/10.1007/978-3-662-52919-5

    Book  MATH  Google Scholar 

  18. Stynes, M., O’Riordan, E.: A uniformly convergent Galerkin method on a Shishkin mesh for a convection-diffusion problem. J. Math. Anal. Appl. 214(1), 36–54 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stynes, M., Tobiska, L.: The SDFEM for a convection-diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal. 41(5), 1620–1642 (2003). https://doi.org/10.1137/S0036142902404728

    Article  MathSciNet  MATH  Google Scholar 

  20. Tobiska, L.: Analysis of a new stabilized higher order finite element method for advection-diffusion equations. Comput. Methods Appl. Mech. Engrg. 196(1-3), 538–550 (2006). https://doi.org/10.1016/j.cma.2006.05.009

    Article  MathSciNet  MATH  Google Scholar 

  21. Yan, N.: Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods. Science Press, Beijing (2008)

    Google Scholar 

  22. Zhang, J., Liu, X.: Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layers. Adv. Comput. Math. 43 (4), 759–775 (2017). https://doi.org/10.1007/s10444-016-9505-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, J., Liu, X.: Superconvergence of finite element method for singularly perturbed convection-diffusion equations in 1D. Appl. Math. Lett. 98, 278–283 (2019). https://doi.org/10.1016/j.aml.2019.06.018

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, J., Liu, X.: Optimal order of uniform convergence for finite element method on Bakhvalov-type meshes. J. Sci. Comput. 85(1), 2 (2020). https://doi.org/10.1007/s10915-020-01312-y

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, J., Liu, X.: Supercloseness of linear finite element method on Bakhvalov-type me shes for singularly perturbed convection-diffusion equation in 1D. Appl. Math. Lett. 111(106), 624 (2021). https://doi.org/10.1016/j.aml.2020.106624

    Google Scholar 

  26. Zhang, J., Liu, X.: Uniform convergence of finite element methods on Bakhvalov-type meshes in the case of \(N^{-1}\leqslant {\varepsilon }\). Appl. Numer. Math. 165, 519–526 (2021). https://doi.org/10.1016/j.apnum.2021.03.013

    Article  MathSciNet  Google Scholar 

  27. Zhang, J., Lv, Y.: High-order finite element method on a Bakhvalov-type mesh for a singularly perturbed convection-diffusion problem with two parameters. Appl. Math. Comput. 397, 125, 953 10 (2021). https://doi.org/10.1016/j.amc.2021.125953

    MathSciNet  MATH  Google Scholar 

  28. Zhang, Z.: Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems. Math. Comp. 72(243), 1147–1177 (2003). https://doi.org/10.1090/S0025-5718-03-01486-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (11771257), Shandong Provincial Natural Science Foundation, China (ZR2021MA004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, X. Supercloseness and postprocessing for linear finite element method on Bakhvalov-type meshes. Numer Algor 92, 1553–1570 (2023). https://doi.org/10.1007/s11075-022-01353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01353-4

Keywords

Mathematics Subject Classification (2010)