Skip to main content
Log in

Unconditionally optimal H1-error estimate of a fast nonuniform L2-1σ scheme for nonlinear subdiffusion equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is concerned with the unconditionally optimal H1-error estimate of a fast second-order scheme for solving nonlinear subdiffusion equations on the nonuniform mesh. We use the Galerkin finite element method (FEM) to discretize the spacial direction, the Newton linearization method to approximate the nonlinear term and the sum-of-exponentials (SOE) approximation to speed up the evaluation of Caputo derivative. Our analysis of the unconditionally optimal H1-error estimate involves the temporal-spatial error splitting approach, an improved discrete fractional Grönwall inequality and error convolution structure. In order to find a suitable test function to estimate H1-error, we here consider two cases: linear and high-order FEM space, using the time-discrete operator and Laplace operator in the test function respectively. Numerical tests are provided demonstrate the effectiveness and the unconditionally optimal H1-error convergence of our scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agarwal, P., Berezansky, L., Braverman, E., Domoshnitsky, A.: Nonoscillation Theory of Functional Differential Equations with Applications. Springer, New York (2012)

    Book  MATH  Google Scholar 

  2. Yuste, S., Acedo, L., Lindenberg, K.: Reaction front in an \(A+B\rightarrow C\) reaction-subdiffusion process. Phys. Rev. E. 69, 036126 (2004)

    Article  Google Scholar 

  3. Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  4. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, D., Sun, W., Wu, C.: A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer. Math. Theor. Meth. Appl. 14(2), 355–376 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39 (6), A3129–A3152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kopteva, N.: Error analysis of the l1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comp. 88, 2135–2155 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform l1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liao, H., Mclean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. Commu. Comput. Phys. 30(2), 567–601 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liao, H., McLean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brunner, H.: The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes. Math. Comput. 45, 417–437 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liao, H., Yan, Y., Zhang, J.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smoooth solutions in time direction. J. Sci. Comput. 80, 403–419 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, D., Wang, J.: Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system. J. Sci. Comput. 72, 892–915 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations. J. Sci. Comput. 76, 848–866 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ji, B., Liao, H., Gong, Y.: Adaptive second-order Crank-Nicolson time-stepping schemes for time-fractional molecular beam epitaxial growth models. SIAM J. Sci. Comput. 42(3), B738–B760 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liao, H., Tang, T., Zhou, T.: An energy stable and maximum bound preserving scheme with variable time steps for time fractional Allen-Cahn equation. SIAM J. Sci. Comput. 43(5), A3503–A3526 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liao, H., Tang, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations. J. Comput. Phys. 414, 109473 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yan, Y., Sun, Z., Zhang, J.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations a second-order scheme. Commun. Comput. Phys. 22, 1028–1048 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Baffet, D., Hesthaven, J.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55, 496–520 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhu, H., Xu, C.: A fast high order method for the time-fractional diffusion equation. SIAM J. Numer. Anal. 57, 2829–2849 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, L., Zeng, F., Turner, I., Burrage, K., Karniadakis, G.: Effcient multistep methods for tempered fractional calculus: algorithms and simulations. SIAM J. Sci. Comput. 41, A2510–A2535 (2019)

    Article  MATH  Google Scholar 

  25. Banjai, L., Lopez-Fernandez, M.: Effcient high order algorithms for fractional integrals and fractional differential equations. Numer. Math. 141, 289–317 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun, J., Nie, D., Deng, W.: Fast algorithms for convolution quadrature of Riemann-Liouville fractional derivative. Appl. Numer. Math. 145, 384–410 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mustapha, K., Abdallah, B., Furati, K.: A discontinuous Petrov-Galerkin method for time-fractional diffusion equations. SIAM J. Numer. Anal. 52, 2512–2529 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lv, C., Xu, C.: Error Analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), 2699–2724 (2016)

    Article  MathSciNet  Google Scholar 

  29. Alikhanov, A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cao, J., Xu, C., Wang, Z.: A high order finite difference/spectral approximations to the time fractional diffusion equations. Adv. Mater. Res. 875, 781–785 (2014)

    Article  Google Scholar 

  31. Li, B., Gao, H., Sun, W.: Unconditionally optimal error estimate of a Crank-Nicolson Galerkin method for nonlinear thermistor equations. SIAM J. Numer. Anal. 52, 933–954 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, D., Wang, J., Zhang, J.: Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39(6), A3067–A3088 (2017)

    Article  MATH  Google Scholar 

  33. Ren, J., Liao, H., Zhang, Z.: Superconvergence error estimate of a finite element method on nonuniform Time Meshes for reaction-subdiffusion equations. J. Sci. Comput. 84(2), 38 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ren, J, Liao, H, Zhang, J, Zhang, Z.: Sharp H1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems. J. Comput. Appl. Math. 389, 113352 (2021)

    Article  MATH  Google Scholar 

  35. Li, X., Liao, H., Zhang, L.: A second-order fast compact scheme with unequal time-steps for subdiffusion problems. Numer. Algo. 86, 1011–1039 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Thomee, V.: Glalerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  37. Zhou, B., Chen, X., Li, D.: Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations. J. Sci. Comput. 85(2), 39 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The numerical simulations in this work have been done on the supercomputing system in the Supercomputing Center of Wuhan University.

Funding

Jiwei Zhang is partially supported by NSFC under grants Nos. 11771035 and 12171376, 2020-JCJQ-ZD-029. Yanping Chen is partially supported by the State Key Program of National Natural Science Foundation of China (No. 11931003) and National Natural Science Foundation of China (No. 41974133). Yanmin Zhao is partially supported by NSFC (No. 11971416) and the Scientific Research Innovation Team of Xuchang University (No. 2022CXTD002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiwei Zhang or Yanmin Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: . The proof of Lemma 3.4

Appendix: . The proof of Lemma 3.4

Proof 4

By the Taylor expansion, we obtain

$$ \begin{array}{@{}rcl@{}} R_{f}^{k-\sigma}&=&{\int}_{v^{k-1}}^{v^{k-\sigma}}(v^{k-\sigma}-\mu)f^{\prime\prime}(\mu) \mathrm{d} \mu\\ &=&{{\int}_{0}^{1}}\left[v^{k-\sigma}-v^{k-1}-s(v^{k-\sigma}-v^{k-1})\right]f^{\prime\prime}\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right)(v^{k-\sigma}-v^{k-1}) \mathrm{d} s\\ &=&(1-\sigma)^{2}(v^{k}-v^{k-1})^{2}{{\int}_{0}^{1}}(1-s)f^{\prime\prime}\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right) \mathrm{d} s,\\ \nabla R_{f}^{k-\sigma}&=&(1-\sigma)^{2}(v^{k}-v^{k-1})^{2}{{\int}_{0}^{1}}(1-s)f^{\prime\prime\prime}\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right)\nabla\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right) \mathrm{d} s\\ &&\quad+2(1-\sigma)^{2}(v^{k}-v^{k-1})\nabla(v^{k}-v^{k-1}){{\int}_{0}^{1}}(1-s)f^{\prime\prime}\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right) \mathrm{d} s,\\ {\Delta} R_{f}^{k-\sigma}&=&2(1-\sigma)^{2}(v^{k}-v^{k-1})\nabla(v^{k}-v^{k-1}){{\int}_{0}^{1}}(1-s)f^{\prime\prime\prime}\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right)\\ &&\quad\quad\nabla\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right) \mathrm{d}s\\ &&\quad+(1-\sigma)^{2}(v^{k}-v^{k-1})^{2}{{\int}_{0}^{1}}(1-s)f^{(4)}\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right)\left( \nabla(v^{k-1}+s(v^{k-\sigma}-v^{k-1}))\right)^{2} \mathrm{d} s\\ &&\quad+(1-\sigma)^{2}(v^{k}-v^{k-1})^{2}{{\int}_{0}^{1}}(1-s)f^{\prime\prime\prime}\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right){\Delta}\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right) \mathrm{d} s\\ &&\quad+2(1-\sigma)^{2}\left( \nabla(v^{k}-v^{k-1})\right)^{2}{{\int}_{0}^{1}}(1-s)f^{\prime\prime}\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right) \mathrm{d} s \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&\quad+2(1-\sigma)^{2}(v^{k}-v^{k-1}){\Delta}(v^{k}-v^{k-1}){{\int}_{0}^{1}}(1-s)f^{\prime\prime}\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right) \mathrm{d} s\\ &&\quad+2(1-\sigma)^{2}(v^{k}-v^{k-1})\nabla(v^{k}-v^{k-1}){{\int}_{0}^{1}}(1-s)f^{\prime\prime\prime}\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right)\\ &&\quad\quad\nabla\left( v^{k-1}+s(v^{k-\sigma}-v^{k-1})\right) \mathrm{d} s. \end{array} $$

By the condition (1.5) of v, we have

$$ \begin{array}{@{}rcl@{}} \left|R_{f}^{k-\sigma}\right|&\leq& C_{v}\left( {\int}_{t_{k-1}}^{t_{k}}\left|v^{\prime}(t)\right|dt\right)^{2}\leq C_{v}\left( {\int}_{t_{k-1}}^{t_{k}}(1+t^{\alpha-1})dt\right)^{2}\leq\begin{cases} C_{v}({\tau_{1}^{2}}+\frac{\tau_{1}^{2\alpha}}{\alpha^{2}}),& \ k=1,\\ C_{v}({\tau_{k}^{2}}+{\tau_{k}^{2}}t_{k-1}^{2(\alpha-1)}),& \ 2\leq k\leq n, \end{cases} \end{array} $$
$$ \begin{array}{@{}rcl@{}} \left|\nabla R_{f}^{k-\sigma}\right|&\leq& C_{v}\left( {\int}_{t_{k-1}}^{t_{k}}|v^{\prime}(t)|dt\right)^{2}+C_{v}{\int}_{t_{k-1}}^{t_{k}}|v^{\prime}(t)|dt{\int}_{t_{k-1}}^{t_{k}}|\nabla v^{\prime}(t)|dt\leq \begin{cases} C_{v}({\tau_{1}^{2}}+\frac{\tau_{1}^{2\alpha}}{\alpha^{2}}),& \ k=1,\\ C_{v}({\tau_{k}^{2}}+{\tau_{k}^{2}}t_{k-1}^{2(\alpha-1)}),& \ 2\leq k\leq n, \end{cases} \end{array} $$
$$ \begin{array}{@{}rcl@{}} \left|{\Delta} R_{f}^{k-\sigma}\right|&\leq& C_{v}{\int}_{t_{k-1}}^{t_{k}}|v^{\prime}(t)|dt{\int}_{t_{k-1}}^{t_{k}}|\nabla v^{\prime}(t)|dt+C_{v}\left( {\int}_{t_{k-1}}^{t_{k}}|v^{\prime}(t)|dt\right)^{2}+C_{v}\left( {\int}_{t_{k-1}}^{t_{k}}|v^{\prime}(t)|dt\right)^{2}\\ &&\quad+C_{v}\left( {\int}_{t_{k-1}}^{t_{k}}|\nabla v^{\prime}(t)|dt\right)^{2}+C_{v}{\int}_{t_{k-1}}^{t_{k}}|v^{\prime}(t)|dt{\int}_{t_{k-1}}^{t_{k}}|{\Delta} v^{\prime}(t)|dt+C_{v}{\int}_{t_{k-1}}^{t_{k}}|v^{\prime}(t)|dt{\int}_{t_{k-1}}^{t_{k}}|\nabla v^{\prime}(t)|dt\\ &\leq&\begin{cases} C_{v}({\tau_{1}^{2}}+\frac{\tau_{1}^{2\alpha}}{\alpha^{2}}),& \ k=1,\\ C_{v}({\tau_{k}^{2}}+{\tau_{k}^{2}}t_{k-1}^{2(\alpha-1)}),& \ 2\leq k\leq n. \end{cases} \end{array} $$

It can be further obtained that

$$ \begin{array}{@{}rcl@{}} &&\sum\limits_{k=1}^{n}P_{n-k}^{(n)}\left|R_{f}^{k-\sigma}\right|+{\sum}_{k=1}^{n}P_{n-k}^{(n)}\left|\nabla R_{f}^{k-\sigma}\right|+\sum\limits_{k=1}^{n}P_{n-k}^{(n)}\left|{\Delta} R_{f}^{k-\sigma}\right|\\ &\leq& P_{n-1}^{(n)}\left|R_{v}^{1-\sigma}\right|+\max_{2\leq k\leq n}\left|R_{f}^{k-\sigma}\right|\sum\limits_{k=2}^{n}P_{n-k}^{(n)}+P_{n-1}^{(n)}\left|\nabla R_{v}^{1-\sigma}\right|+\max_{2\leq k\leq n}\left|\nabla R_{f}^{k-\sigma}\right|{\sum}_{k=2}^{n}P_{n-k}^{(n)}\\ &&\quad+P_{n-1}^{(n)}\left|{\Delta} R_{v}^{1-\sigma}\right|+\max_{2\leq k\leq n}\left|{\Delta} R_{f}^{k-\sigma}\right|{\sum}_{k=2}^{n}P_{n-k}^{(n)}\\ &\leq& C_{v}\left[\tau_{1}^{3\alpha}+\max_{2\leq k\leq n}t_{n}^{\alpha}\left( {\tau_{k}^{2}}+{\tau_{k}^{2}}t_{k-1}^{2\alpha-2}\right)\right], \end{array} $$

where Cv in different places represents different constant. The proof is completed. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Chen, Y., Zhang, J. et al. Unconditionally optimal H1-error estimate of a fast nonuniform L2-1σ scheme for nonlinear subdiffusion equations. Numer Algor 92, 1655–1677 (2023). https://doi.org/10.1007/s11075-022-01359-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01359-y

Keywords

Mathematics Subject Classification 2010

Navigation