Abstract
The paper revisits the topic of block-Jacobi algorithms for the symmetric eigenvalue problem by proposing a few alternative versions. The main advantage of a block Jacobi method is that it is built entirely from computations with small dense matrices. The proposed mehod is based on a sequence of subspace rotations whose determination requires to solve small Riccati-like correction equation. The paper discusses theoretical and algorithmic aspects of the algorithm, and illustrates its behavior on a few simple examples.





Similar content being viewed by others
Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
Notes
This work won the very first PhD thesis prize at the Householder meeting (then called the Gatlinburg conference)
In the commun notation used in the litterature, the parameter \(\mu\) is replaced by \(\nu\).
References
Absil, P.A., Mahoney, R., Sepulchre, R., Van Dooren, P.: A grassmann-rayleigh quotient iteration for computing invariant subspaces. SIAM Rev. 44, 57–73 (2002)
Bini, D.A., Iannazzo, B., Poloni, F.: A fast newton’s method for a nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 30, 276–290 (2008)
Bischof, C., Van Loan, C.: Computing the singular value decomposition on a ring of array processors. In: Cullum, J., Willoughby, R.A. (eds.) Large Scale Eigenvalue Problems, , vol.127 of North-Holland Mathematics Studies, pp. 51–66. North-Holland (1986)
Bischof, C.H., Lang, B., Sun, X.: A framework for symmetric band reduction. ACM Trans. Math. Softw. 26, 581–601 (2000)
Bittanti, S., Laub, A., J.C.W. (eds.) The Riccati Equation. Springer Verlag, Berlin, (1991)
Björk, A.L.: Numerical methods in matrix computations, Texts in applied mathematics, vol. 59. Springe (2015)
Brandts, J.: The riccati algorithm for eigenvalues and invariant subspaces of matrices with inexpensive action. Linear Algebra Appl. 358, 335–365 (2003)
Brandts, J.H.: The Riccati method for eigenvalues and invariant subspaces of matrices with inexpensive action. Linear Algebra Appl. 358, 333–363 (2003)
Chatelin, F.: Simultaneous Newton’s iteration for the eigenproblem. In: S.H. Böhmer K., (ed.) Defect Correction Methods. Computing Supplementum, vol 5. Vienna, Springer (1984)
Demmel, J., Veselić, K.: Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl. 13, 1204–1245 (1992)
Demmel, J.W.: Three methods for refining estimates of invariant subspaces. Computing 38, 43–57 (1987)
Deshpande, A., Rademacher, L.: Efficient volume sampling for row/column subset selection. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp.329–338. (2010)
Deshpande, A., Rademacher, L., Vempala, S., Wang, G.: Matrix approximation and projective clustering via volume sampling. Theor. Comput. 2, 225–247 (2006)
Drmač, Z.: A global convergence proof for cyclic Jacobi methods with block rotations. SIAM J. Matrix Anal. Appl. 31, 1329–1350 (2010)
Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1999)
Forsythe, G.E., Henrici, P.: The cyclic Jacobi method for computing the principal values of a complex matrix (1960)
Francis, J.G.F.: The QR transformations, parts I and I. Comput. J., 4(1961-1962), 362–363, and 332–345
Freiling, G.: A survey of nonsymmetric riccati equations, Linear Algebra and its Applications, 351-352 (2002), pp.243–270. Fourth Special Issue on Linear Systems and Control
Freiling, G., Jank, G., Abou-Kandil, H.: On global existence of solutions to coupled matrix Riccati equations in closed-loop nash games. IEEE Trans. Autom. Control 41, 264–269 (1996)
Golub, G.H., Loan, C.F.V.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore, MD (2013)
Goreinov, S., Tyrtyshnikov, E., Zamarashkin, N.: A theory of pseudoskeleton approximations. Linear Algebra Appl. 261, 1–21 (1997)
Goreinov, S.A., Oseledets, I.V., Savostyanov, D.V., Tyrtyshnikov, E.E., Zamarashkin, N.L.: How to Find a Good Submatrix, pp.247–256 (2010)
Gotze, J., Paul, S., Sauer, M.: An efficient Jacobi-like algorithm for parallel eigenvalue computation. IEEE Trans. Comput. 42, 1058–1065 (1993)
Guo, C., Higham, N.J.: Iterative solution of a nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29, 396–412 (2007)
Guo, C.-H., Laub, A.J.: On a newton-like method for solving algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 21, 694–698 (2000)
Hari, V.: Globally convergent Jacobi methods for positive definite matrix pairs. Numer. Algorithms 79, 221–249 (2018)
Hari, V.: On the global convergence of the block Jacobi method for the positive definite generalized eigenvalue problem. Calcolo 58, 24 (2021)
Hari, V., Singer, S., Singer, S.: Full block J-Jacobi method for hermitian matrices. Linear Algebra Appl. 444, 1–27 (2014)
Jacobi, C.G.J.: über ein lechtes verfahren, die in der theorie säculastrüngen vorkommenden gleichungen numerisch aufzulösen. J. Reine Angew. Math. Crelle’s J. 30, 51–94 (1846)
Kudo, S., Yasuda, K., Yamamoto, Y.: Performance of the parallel block Jacobi method with dynamic ordering for the symmetric eigenvalue problem. JSIAM Lett. (Japan Soc. Ind. Appl. Math.) 10, 41–44 (2018)
Laub, A.: A Schur method for solving algebraic Riccati equations. IEEE Trans. Autom. Control 24, 913–921 (1979)
Laub, A.J.: Schur techniques in invariant imbedding methods for solving two point boundary value problems. In: Proceedings of the 21-st Conference on Decision and Control, Orlando, Florida, Dec. 1982, (1982)
Loan, C.V.: The block Jacobi method for computing the singular value decomposition. In: Byrnes, C., Lindquist, A. (eds.) Computational and Combinatorial Methods in Systems Theory, pp.245–255. Amsterdam, Elsevier Science Publishers B.V. (North-Holland) (1986)
Loizou, G.: On the quadratic convergence of the Jacobi method for normal matrices. Comput. J. 15, 274–276 (1972)
Luk, F.T., Park, H.: On parallel Jacobi orderings. SIAM J. Sci. Stat. Comput. 10, 18–26 (1989)
Mahoney, M.W., et al.: Randomized algorithms for matrices and data, Foundations and Trends®. Mach. Learn. 3, 123–224 (2011)
Marek, A., Blum, V., Johanni, R., Havu, V., Lang, B., Auckenthaler, T., Heinecke, A., Bungartz, H.-J., Lederer, H.: The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science. J. Phys.: Condens. Matter 26, 213201 (2014)
Nazareth, L.: On the convergence of the cyclic Jacobi method. Linear Algebra Appl. 12, 151–164 (1975)
Ogita, T., Aishima, K.: Iterative refinement for symmetric eigenvalue decomposition. Jpn. J. Ind. Appl. Math. 35, 1007–1035 (2018)
Ogita, T., Aishima, K.: Iterative refinement for symmetric eigenvalue decomposition II: clustered eigenvalues. Jpn. J. Ind. Appl. Math. 36, 435–459 (2019)
Philippe, B., Saad, Y.: On correction equations and domain decomposition for computing invariant subspaces. Comput. Methods Appl. Mech. Eng. (special issue devoted to Domain Decomposition) 196, 1471–1483 (2007)
Robert, F.: Blocs-h-matrices et convergence des methodes iteratives classiques par blocs. Linear Algebra Appl. 2, 223–265 (1969)
Ruhe, A.: On the quadratic convergence of the Jabobi method for normal matrices. BIT Numer. Math. 7, 305–313 (1967)
Sameh, A.H.: On Jacobi and Jacobi-like algorithms for a parallel computer. Math. Comp. 25, 579–590 (1971)
Van Dooren, P.: A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Stat. Comput. 2, 121–135 (1981)
van Kempen, H.P.M.: On the quadratic convergence of the special cyclic Jacobi method. Numer. Math 9, 19–22 (1966)
Wilkinson, J.H.: Note on the quadratic convergence of the cyclic Jacobi process. Num. Math. 4, 296–300 (1962)
Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)
Yamamoto, Y., Lan, Z., Kudo, S.: Convergence analysis of the parallel classical block Jacobi method for the symmetric eigenvalue problem. JSIAM Lett. (Japan Society for Industrial and Applied Mathematics) 6, 57–60 (2014)
Yamamoto, Y., Okša, G., Vajteršic, M.: On convergence to eigenvalues and eigenvectors in the block-Jacobi EVD algorithm with dynamic ordering. Linear Algebra Appl. 622, 19–45 (2021)
Çivril, A., Magdon-Ismail, M.: On selecting a maximum volume sub-matrix of a matrix and related problems. Theoret. Comput. Sci. 410, 4801–4811 (2009)
Acknowledgements
The paper has benefitted from a careful reading from an anonymous referee who made a number of suggestions and pointed out two references on related work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The author declares that he has no conflict of interest.
Additional information
This work was supported by NSF under grant DMS-2011324.
Rights and permissions
About this article
Cite this article
Saad, Y. Revisiting the (block) Jacobi subspace rotation method for the symmetric eigenvalue problem. Numer Algor 92, 917–944 (2023). https://doi.org/10.1007/s11075-022-01377-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-022-01377-w