Skip to main content
Log in

Revisiting the (block) Jacobi subspace rotation method for the symmetric eigenvalue problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The paper revisits the topic of block-Jacobi algorithms for the symmetric eigenvalue problem by proposing a few alternative versions. The main advantage of a block Jacobi method is that it is built entirely from computations with small dense matrices. The proposed mehod is based on a sequence of subspace rotations whose determination requires to solve small Riccati-like correction equation. The paper discusses theoretical and algorithmic aspects of the algorithm, and illustrates its behavior on a few simple examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. This work won the very first PhD thesis prize at the Householder meeting (then called the Gatlinburg conference)

  2. In the commun notation used in the litterature, the parameter \(\mu\) is replaced by \(\nu\).

References

  1. Absil, P.A., Mahoney, R., Sepulchre, R., Van Dooren, P.: A grassmann-rayleigh quotient iteration for computing invariant subspaces. SIAM Rev. 44, 57–73 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bini, D.A., Iannazzo, B., Poloni, F.: A fast newton’s method for a nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 30, 276–290 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bischof, C., Van Loan, C.: Computing the singular value decomposition on a ring of array processors. In: Cullum, J., Willoughby, R.A. (eds.) Large Scale Eigenvalue Problems, , vol.127 of North-Holland Mathematics Studies, pp. 51–66. North-Holland (1986)

  4. Bischof, C.H., Lang, B., Sun, X.: A framework for symmetric band reduction. ACM Trans. Math. Softw. 26, 581–601 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bittanti, S., Laub, A., J.C.W. (eds.) The Riccati Equation. Springer Verlag, Berlin, (1991)

  6. Björk, A.L.: Numerical methods in matrix computations, Texts in applied mathematics, vol. 59. Springe (2015)

  7. Brandts, J.: The riccati algorithm for eigenvalues and invariant subspaces of matrices with inexpensive action. Linear Algebra Appl. 358, 335–365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brandts, J.H.: The Riccati method for eigenvalues and invariant subspaces of matrices with inexpensive action. Linear Algebra Appl. 358, 333–363 (2003)

    Article  MATH  Google Scholar 

  9. Chatelin, F.: Simultaneous Newton’s iteration for the eigenproblem. In: S.H. Böhmer K., (ed.) Defect Correction Methods. Computing Supplementum, vol 5. Vienna, Springer (1984)

  10. Demmel, J., Veselić, K.: Jacobi’s method is more accurate than QR. SIAM J. Matrix Anal. Appl. 13, 1204–1245 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Demmel, J.W.: Three methods for refining estimates of invariant subspaces. Computing 38, 43–57 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deshpande, A., Rademacher, L.: Efficient volume sampling for row/column subset selection. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pp.329–338. (2010)

  13. Deshpande, A., Rademacher, L., Vempala, S., Wang, G.: Matrix approximation and projective clustering via volume sampling. Theor. Comput. 2, 225–247 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Drmač, Z.: A global convergence proof for cyclic Jacobi methods with block rotations. SIAM J. Matrix Anal. Appl. 31, 1329–1350 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20, 303–353 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Forsythe, G.E., Henrici, P.: The cyclic Jacobi method for computing the principal values of a complex matrix (1960)

  17. Francis, J.G.F.: The QR transformations, parts I and I. Comput. J., 4(1961-1962), 362–363, and 332–345

  18. Freiling, G.: A survey of nonsymmetric riccati equations, Linear Algebra and its Applications, 351-352 (2002), pp.243–270. Fourth Special Issue on Linear Systems and Control

  19. Freiling, G., Jank, G., Abou-Kandil, H.: On global existence of solutions to coupled matrix Riccati equations in closed-loop nash games. IEEE Trans. Autom. Control 41, 264–269 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Golub, G.H., Loan, C.F.V.: Matrix Computations, 4th edn. Johns Hopkins University Press, Baltimore, MD (2013)

    Book  MATH  Google Scholar 

  21. Goreinov, S., Tyrtyshnikov, E., Zamarashkin, N.: A theory of pseudoskeleton approximations. Linear Algebra Appl. 261, 1–21 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goreinov, S.A., Oseledets, I.V., Savostyanov, D.V., Tyrtyshnikov, E.E., Zamarashkin, N.L.: How to Find a Good Submatrix, pp.247–256 (2010)

  23. Gotze, J., Paul, S., Sauer, M.: An efficient Jacobi-like algorithm for parallel eigenvalue computation. IEEE Trans. Comput. 42, 1058–1065 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, C., Higham, N.J.: Iterative solution of a nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29, 396–412 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo, C.-H., Laub, A.J.: On a newton-like method for solving algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 21, 694–698 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hari, V.: Globally convergent Jacobi methods for positive definite matrix pairs. Numer. Algorithms 79, 221–249 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hari, V.: On the global convergence of the block Jacobi method for the positive definite generalized eigenvalue problem. Calcolo 58, 24 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hari, V., Singer, S., Singer, S.: Full block J-Jacobi method for hermitian matrices. Linear Algebra Appl. 444, 1–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jacobi, C.G.J.: über ein lechtes verfahren, die in der theorie säculastrüngen vorkommenden gleichungen numerisch aufzulösen. J. Reine Angew. Math. Crelle’s J. 30, 51–94 (1846)

    MathSciNet  Google Scholar 

  30. Kudo, S., Yasuda, K., Yamamoto, Y.: Performance of the parallel block Jacobi method with dynamic ordering for the symmetric eigenvalue problem. JSIAM Lett. (Japan Soc. Ind. Appl. Math.) 10, 41–44 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Laub, A.: A Schur method for solving algebraic Riccati equations. IEEE Trans. Autom. Control 24, 913–921 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Laub, A.J.: Schur techniques in invariant imbedding methods for solving two point boundary value problems. In: Proceedings of the 21-st Conference on Decision and Control, Orlando, Florida, Dec. 1982, (1982)

  33. Loan, C.V.: The block Jacobi method for computing the singular value decomposition. In: Byrnes, C., Lindquist, A. (eds.) Computational and Combinatorial Methods in Systems Theory, pp.245–255. Amsterdam, Elsevier Science Publishers B.V. (North-Holland) (1986)

  34. Loizou, G.: On the quadratic convergence of the Jacobi method for normal matrices. Comput. J. 15, 274–276 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  35. Luk, F.T., Park, H.: On parallel Jacobi orderings. SIAM J. Sci. Stat. Comput. 10, 18–26 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mahoney, M.W., et al.: Randomized algorithms for matrices and data, Foundations and Trends®. Mach. Learn. 3, 123–224 (2011)

    MATH  Google Scholar 

  37. Marek, A., Blum, V., Johanni, R., Havu, V., Lang, B., Auckenthaler, T., Heinecke, A., Bungartz, H.-J., Lederer, H.: The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science. J. Phys.: Condens. Matter 26, 213201 (2014)

    Google Scholar 

  38. Nazareth, L.: On the convergence of the cyclic Jacobi method. Linear Algebra Appl. 12, 151–164 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ogita, T., Aishima, K.: Iterative refinement for symmetric eigenvalue decomposition. Jpn. J. Ind. Appl. Math. 35, 1007–1035 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ogita, T., Aishima, K.: Iterative refinement for symmetric eigenvalue decomposition II: clustered eigenvalues. Jpn. J. Ind. Appl. Math. 36, 435–459 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Philippe, B., Saad, Y.: On correction equations and domain decomposition for computing invariant subspaces. Comput. Methods Appl. Mech. Eng. (special issue devoted to Domain Decomposition) 196, 1471–1483 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Robert, F.: Blocs-h-matrices et convergence des methodes iteratives classiques par blocs. Linear Algebra Appl. 2, 223–265 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ruhe, A.: On the quadratic convergence of the Jabobi method for normal matrices. BIT Numer. Math. 7, 305–313 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sameh, A.H.: On Jacobi and Jacobi-like algorithms for a parallel computer. Math. Comp. 25, 579–590 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  45. Van Dooren, P.: A generalized eigenvalue approach for solving Riccati equations. SIAM J. Sci. Stat. Comput. 2, 121–135 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  46. van Kempen, H.P.M.: On the quadratic convergence of the special cyclic Jacobi method. Numer. Math 9, 19–22 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wilkinson, J.H.: Note on the quadratic convergence of the cyclic Jacobi process. Num. Math. 4, 296–300 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

  49. Yamamoto, Y., Lan, Z., Kudo, S.: Convergence analysis of the parallel classical block Jacobi method for the symmetric eigenvalue problem. JSIAM Lett. (Japan Society for Industrial and Applied Mathematics) 6, 57–60 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Yamamoto, Y., Okša, G., Vajteršic, M.: On convergence to eigenvalues and eigenvectors in the block-Jacobi EVD algorithm with dynamic ordering. Linear Algebra Appl. 622, 19–45 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  51. Çivril, A., Magdon-Ismail, M.: On selecting a maximum volume sub-matrix of a matrix and related problems. Theoret. Comput. Sci. 410, 4801–4811 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The paper has benefitted from a careful reading from an anonymous referee who made a number of suggestions and pointed out two references on related work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Saad.

Ethics declarations

Conflicts of interest

The author declares that he has no conflict of interest.

Additional information

This work was supported by NSF under grant DMS-2011324.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, Y. Revisiting the (block) Jacobi subspace rotation method for the symmetric eigenvalue problem. Numer Algor 92, 917–944 (2023). https://doi.org/10.1007/s11075-022-01377-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01377-w

Keywords