Skip to main content
Log in

A penalized nonlinear ADMM algorithm applied to the multi-constrained traffic assignment problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We formulate the Multi-Constrained Dynamic Traffic Assignment (DTA) problem as an instance of the nonlinear composite problem. To solve the problem, this paper introduces then the penalized nonlinear alternating direction method of multipliers (ADMM), a numerical algorithm that combines the nonlinear ADMM algorithm with the external penalty method. Numerical results are then presented, analyzed and compared against those obtained by applying the Reformulation-Linearization Technique (RLT)-based convex relaxation method together with piecewise linear approximation of the objective function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1

Similar content being viewed by others

Data availability

The network topology datasets generated during and/or analyzed during the current study are available in the SNDlib repository [20], http://sndlib.zib.de/problems.overview.action. The demand and path datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Mathematical Programming, Series A 87(1), 131–152 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birge, J.R., Ho, J.K.: Optimal flows in stochastic dynamic networks with congestion. Oper. Res. 41(1), 203–216 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bolte, J., Sabach, S., Teboulle, M.: Nonconvex lagrangian-based optimization: monitoring schemes and global convergence. Math. Oper. Res. 43(4), 1210–1232 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3(1), 1–122 (2010)

    Article  MATH  Google Scholar 

  5. Burke, J.V., Engle, A.: Line search and trust-region methods for convex-composite optimization, arXiv preprint, arXiv:1806.05218 (2018)

  6. Carey, M.: Optimal time varying flows on congested networks. Oper. Res. 35(1), 58–69 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, E., Hallak, N., Teboulle, M.: A dynamic alternating direction of multipliers for nonconvex minimization with nonlinear functional equality constraints. Journal of Optimization Theory and Applications 193(1), 324–353 (2021)

    MathSciNet  MATH  Google Scholar 

  8. Combettes, P.L., Dung, D., Vu, B.C.: Proximity for sums of composite functions. Journal of Mathematical Analysis and Applications 380(2), 680–688 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dacey, R.: The S-shaped utility function. Decision Theory 135(2), 243–272 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Computers and Mathematics with Applications 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  11. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par penalisation-dualité, d’une classe de problemes de Dirichlet non linéaires. Revue Francaise d’Automatique, Informatique, et Recherche Operationelle 9, 41–76 (1975)

    MATH  Google Scholar 

  12. Hearn, D.W.: Bounding flows in traffic assignment models. Research Report 80-4, Department of Industrial and Systems Engineering, University of Florida, Gainesville, Florida (1980)

  13. Hestenes, M.R.: Multiplier and gradient methods. Journal of Optimization Theory and Applications 4(5), 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khintchine, A.Y.: Mathematical theory of a stationary queue. Matematicheskii Sbornik 39(4), 73–84 (1932)

    Google Scholar 

  15. Larsson, T., Patriksson, M.: An augmented Lagrangian dual algorithm link capacity side constrained traffic assignment problems. Transportation Research Part B: Methodological 29, 433–455 (1995)

    Article  Google Scholar 

  16. Lewis, A.S., Wright, S.J.: A proximal method for composite minimization. Math. Program. 158(1–2), 501–546 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I - convex underestimating problems. Math. Program. 10, 147–175 (1976)

    Article  MATH  Google Scholar 

  18. Merchant, D.K., Nemhauser, G.L.: A model and an algorithm for the dynamic traffic assignment problems. Trans. Sci. 12, 183–199 (1978)

    Article  Google Scholar 

  19. Nie, Y., Zhang, H.M., Lee, D.-H.: Models and algorithms for the traffic assignment problem with link capacity constraints. Transportation Research Part B: Methodological 38, 285–312 (2004)

    Article  Google Scholar 

  20. Orlowski, S., Wessaly, R., Pioro, M., Tomaszewski, A.: SNDlib 1.0 - Survivable network design library. Networks 55, 276-286 (2010)

  21. Peeta, S., Ziliaskopoulos, A.K.: Foundations of dynamic traffic assignment: The past, the present and the future. Networks and Spatial Economics 1, 233–265 (2001)

    Article  Google Scholar 

  22. Pollaczek, F.: Uber eine aufgabe der wahrscheinlichkeitstheorie. Mathematische Zeitschrift 32, 64–100 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  23. Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)

    Google Scholar 

  24. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM Journal on Discrete Mathematics 3(3), 411–430 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique. Journal of Global Optimization 2, 101–112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems. Discrete Applied Mathematics 52, 83–106 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sherali, H.D., Adams, W.P.: A reformulation-linearization technique for solving discrete and continuous nonconvex problems. Kluwer Academic Publishers, Dordrecht, Boston, London (1999)

    Book  MATH  Google Scholar 

  28. Sherali, H.D., Wang, H.: Global optimization of nonconvex factorable programming problems. Mathematical Programming, Series A 89(3), 459–478 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Adams, W.P., Sherali, H.D.: A hierarchy of relaxations leading to the convex hull representation for general discrete optimization problems. In: Guignard, M., Spielberg, K. (Eds.) State-of-the-Art in Integer Programming, Annals of Operations Research, vol. 140, no. 1, pp. 21-47. (2005)

  30. Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM Journal of Control 12, 268–285 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  31. Valkonen, T.: A primal-dual hybrid gradient method for nonlinear operators with applications to MRI. Inverse Problems 30(5), 055012 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vu, B.C., Papadimitriou, D.: A nonlinear ADMM for nonlinear composite problems. Under review (2021)

  33. Wang, Y., Szeto, W.Y., Han, K., Friesz, T.L.: Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications. Transportation Research Part B: Methodological 111, 370–394 (2018)

    Article  Google Scholar 

  34. Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. Journal of Scientific Computing 78, 29–63 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ziliaskopoulos, A.K.: A linear programming model for the single destination system optimum dynamic traffic assignment problem. Trans. Sci. 34(1), 37–49 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Papadimitriou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadimitriou, D., Vũ, B.C. A penalized nonlinear ADMM algorithm applied to the multi-constrained traffic assignment problem. Numer Algor 92, 2219–2242 (2023). https://doi.org/10.1007/s11075-022-01384-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01384-x

Keywords

Navigation