Skip to main content
Log in

A hybrid inertial and contraction proximal point algorithm for monotone variational inclusions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new class of hybrid inertial and contraction proximal point algorithm for the variational inclusion problem of the sum of two mappings in Hilbert spaces. We prove that the proposed algorithm converges strongly to a solution of the variational inclusion problem whenever its solution set is nonempty and the single-valued mapping f is Lipschitz continuous, monotone, and the set-valued mapping \({\mathscr{A}}\) is maximal monotone in infinite-dimensional real Hilbert spaces. Our work generalize and extend some related existing results in the literature. Finally, we illustrate the numerical performance of our Algorithm 1 and we give an application to the split feasibility problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The author acknowledges that the data presented in this study must be deposited and made publicly available in an acceptable repository, prior to publication.

References

  1. Zhang, C., Wang, Y.: Proximal algorithm for solving monotone variational inclusion. Optimization 67(8), 1197–1209 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Rockafellar, R.T.: Monotone operators and the proximal point algorithms. SIAM J. Control Optim. 14(5), 877–898 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in hilbert space. SIAM J. Optim. 14(3), 773–782 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Bruck, R.E.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18, 15–26 (1975)

    MathSciNet  MATH  Google Scholar 

  5. Tiel, J.V.: Convex Analysis: an Introductory Text. Wiley, New York (1984)

    MATH  Google Scholar 

  6. Dey, S., Vetrivel, V., Xu, H.K.: A neural network method for monotone variational inclusions. J. Nonlinear Convex Anal. 20(11), 2387–2395 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    MATH  Google Scholar 

  8. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  9. Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. CR Acad. Sci. 258, 4413–4416 (1964)

    MathSciNet  MATH  Google Scholar 

  10. Noor, M.D.: Well-posed variational inequalities. J. Appl. Math. Comput. 11(1-2), 165–172 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Dong, Q.L., Lu, Y.Y., Yang, J., He, S.: Approximately solving multi-valued variational inequalities by using a projection and contraction algorithm. Numer. Algorithms 76(3), 799–812 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Yamada, H.: The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. Inherently parallel algorithms in feasibility and optimization and their applications 8(1), 473–504 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    MathSciNet  MATH  Google Scholar 

  16. He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Dong, Q.L., Yang, J.F., Yuan, H.B.: The projection and contraction algorithm for solving variational inequality problems in Hilbert space. J. Nonlinear Convex Anal. 20(1), 111–122 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Huang, N.J.: A new completely general class of variational inclusions with noncompact valued mappings. Comput. Math. Appl. 35(10), 9–14 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Sun, D.F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, M.: Inertial projection contraction algorithms for variational inequalities. J. Global Optim. 70, 687–704 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Thong, D.V., Triet, N.A., Li, X.H., Dong, Q.L.: Strong convergence of extragradient methods for solving bilevel pseudo-monotone variational inequality problems. Numer. Algorithms 83, 1123–1143 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Antipin, A.S.: On a method for convex programs using a symmetrical modification of the lagrange function. Ekon Matematicheskie Metody 12, 1164–1173 (1976)

    Google Scholar 

  23. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon Matematicheskie Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  24. Malitsky, Y.: Projected reflected gradient methods for variational inequalities. SIAM J. Optim. 25(1), 502–520 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Mainge, P.E., Gobinddass, M.L.: Convergence of one-step projected gradient methods for variational inequalities. J. Optim. Theory Appl. 171, 146–168 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Cai, X.J., Gu, G.Y., He, B.S.: On the \(o(\frac {1}{t})\) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339–363 (2014)

  27. Moudafi, A.: Split monotone variational inclusion. J. Optim. Theory Appl. 150, 275–283 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Zeng, L.C., Guu, S.M., Yao, J.C.: Characterization of H-monotone operators with applications to variational inclusions. Comput. Math. Appl. 50 (3-4), 329–337 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Fang, Y.P., Huang, N.J.: H-monotone operator resolvent operator technique for variational inclusion. Appl. Math Comput. 145, 795–803 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Wei, L.V.Z., Cui, Y.L., Song, Z.P.: A new class of extended variational inclusions with H-monotone operator. J. Yanan Univ. 24(3), 9–11 (2005)

    Google Scholar 

  31. Verma, R.U.: Approximation solvability of a class of A-monotone variational inclusion problems. J. Korean Soc. Ind. Appl. Math. 8(1), 55–66 (2004)

    MathSciNet  Google Scholar 

  32. Verma, R.U.: A-monotone nonlinear relaxed co-coercive variational inclusions. Cent. Eur. J. Math. 5, 386–396 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Xiao, Y.B., Huang, N.J., Wong, M.M.: Well-posedness of hemivariational inequalities and inclusion problems. Taiwan. J. Math. 15, 1261–1276 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Chuang, C.S.: Hybrid inertial proximal algorithm for the split variational inclusion problem in Hilbert spaces with applications. Optimization 66 (5), 777–792 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Long, L.V., Thong, D.V., Dung, V.T.: New algorithms for the split variational inclusion problems and application to split feasibility problems. Optimization 68(12), 2339–2367 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Geoffroy, M.H., Alexis, C.J., Piétrus, A.: A Hummel–Seebeck type method for variational inclusions. Optimization 58(4), 389–399 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Rosasco, L., Villa, S., Vu, B.C.: A stochastic inertial forward-backward splitting algorithm for multivariate monotone inclusions. Optimization 65(6), 1293–1314 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Luc, D.T., Tan, N.X.: Existence conditions in variational inclusions with constraints. Optimization 53(5-6), 505–515 (2004)

    MathSciNet  MATH  Google Scholar 

  39. Arias, L.B., Rivera, S.L.: A projected primal–dual method for solving constrained monotone inclusions. J. Optim. Theory Appl. 180, 907–924 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 256, 472–487 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Bot, R.I., Csetnek, E.R.: An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithms 71, 519–540 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Majee, P., Nahak, C.: On inertial proximal algorithm for split variational inclusion problems. Optimization 67(10), 1701–1716 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    MathSciNet  MATH  Google Scholar 

  44. Bot, R.I., Csetnek, E.R.: A hybrid proximal-extragradient algorithm with inertial effects. Numer. Funct. Anal. Optim. 36, 951–963 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargementof a maximal monotone operator. Set-Valued Anal. 7(4), 323–345 (1999)

    MathSciNet  MATH  Google Scholar 

  46. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9, 3–11 (2001)

    MathSciNet  MATH  Google Scholar 

  47. Zirilli, F., Aluffi, F., Parisi, V.: DAFNE : a differential equations algorithm for non-linear equations. ACM Trans. Math. Software 10, 317–324 (1984)

    MathSciNet  Google Scholar 

  48. Antipin, A.S.: Minimization of convex functions on convex sets by means of differential equations. Differential Equ. 30, 1365–1375 (1994)

    MathSciNet  MATH  Google Scholar 

  49. Cholamjiak, W., Cholamjiak, P., Suantai, S.: An inertial forward-backward splitting method for solving inclusion problems in Hilbert spaces. J. Fixed Point Theory Appl., vol. 20(42) (2018)

  50. Zhang, C., Dong, Q.L., Chen, J.: Multi-step inertial proximal contraction algorithms for monotone variational inclusion problems. Carpathian J. Math. 36(1), 159–177 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Saejung, S., Yotkaew, P.: Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. 75, 742–750 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Censor, Y., Elfving, T.: A multi projection algorithm using Bregman projection in a product space. Numer. Algorithms 8, 221–239 (1994)

    MathSciNet  MATH  Google Scholar 

  53. Rockafellar, R.T., Wets, R.: Variational Analysis. Springer, Berlin (1998)

    MATH  Google Scholar 

  54. Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces, vol. 2057, Lecture Notes in Mathematics. Springer, Berlin (2012)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for his valuable suggestions to improve the earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumitra Dey.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S. A hybrid inertial and contraction proximal point algorithm for monotone variational inclusions. Numer Algor 93, 1–25 (2023). https://doi.org/10.1007/s11075-022-01400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01400-0

Keywords

Mathematics Subject Classification (2010)

Navigation