Skip to main content
Log in

Harmonic multi-symplectic Lanczos algorithm for quaternion singular triplets

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The computation of quaternion singular triplets has become one of the core targets of color image processing. However, the existing algorithms are far from meeting people’s expectations on the computation speed. A novel harmonic multi-symplectic Lanczos algorithm is presented for approximating extreme quaternion singular triplets, which performs real operations entirely and stores only four parts of quaternion matrices or vectors. The underlying theory is to preserve an algebraic structure during the partial bidiagonalization, the argumentation, and the restarted bidiagonalization. Both the smallest and largest quaternion singular triples are computed with high precision and in short calculation time. The proposed algorithm is applied to color video semantic segmentation. Numerical examples on synthetic and color image data sets illustrate that the proposed algorithm is superior to the state-of-the-art algorithms in terms of residual calculation and computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Algorithm 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyses during the current study are available in the website https://math.nist.gov/MatrixMarket and the paper [31].

Notes

  1. https://math.nist.gov/MatrixMarket

References

  1. Baglama, J., Reichel, L.: Augmented implicitly restarted Lanczos bidiagonalization methods,. SIAM J. Sci. Comput. 27, 19–42 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Björck, A., Grimme, E., Van Dooren, P.: An implicit bidiagonalization algorithm for ill-posed systems. BIT 34, 510–534 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Feng, K.: On difference schemes and symplectic geometry. In: Feng, K. (ed.) Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, pp 42–58. Science Press, Beijing (1985)

  4. Feng, K.: Difference schemes for Hamiltonian formalism and symplectic geometry. J. Comp. Math. 4, 279–289 (1986)

    MathSciNet  MATH  Google Scholar 

  5. Goldenberg, S., Stathopoulos, A., Romero, E.: A Golub–Kahan Davidson method for accurately computing a few singular triplets of large sparse matrices. SIAM J. Sci. Comput. 41, A2172–A2192 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Golub, G.H., Van Loan, C.F.: Matrix Computation, 4th edn. The Johns Hopkins University Press, Baltimore (2013)

    Book  MATH  Google Scholar 

  7. Hamilton, W.R.: Elements of Quaternions. Chelsea, New York (1969)

    Google Scholar 

  8. Huang, J.Z., Jia, Z.: On inner iterations of Jacobi–Davidson type methods for large SVD computations. SIAM J. Sci. Comput. 41, A1574–A1603 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jia, Z.G., Wei, M., Ling, S.T.: A new structure-preserving method for quaternion Hermitian eigenvalue problems. J. Comput. Appl Math. 239, 12–24 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jia, Z.G., Wei, M., Zhao, M.X., Chen, Y.: A new real structure-preserving quaternion QR algorithm. J. Comput. Appl. Math. 343, 26–48 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jia, Z.G.: The Eigenvalue Problem of Quaternion Matrix: Structure-Preserving Algorithms and Applications. Science Press, Beijing (Dec. 2019)

    Google Scholar 

  12. Jia, Z.G., Ng, M.K., Song, G.J.: Robust quaternion matrix completion with applications to image inpainting. Numer. Linear Algebra Appl. 26, e2245 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jia, Z.G., Ng, M.K., Song, G.J.: Lanczos method for large-scale quaternion singular value decomposition. Numer. Algorithms 82, 699–717 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jia, Z.G., Liu, X., Zhao, M.X.: The implicitly restarted multi-symplectic block-Lanczos method for large-scale Hermitian quaternion matrix eigenvalue problem and applications. J. Comput. Appl. Math. 419, 114664 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jia, Z.G., Ng, M.K.: Structure preserving quaternion generalized minimal residual method. SIAM J. Matrix Anal. Appl. 42(2), 616–634 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jia, Z.G., Ng, M.K., Wang, W.: Color image restoration by saturation-value (SV) total variation. SIAM J. Imaging Sciences 12, 972–1000 (2019)

    Article  MathSciNet  Google Scholar 

  17. Jia, Z.G., Jin, Q.Y., Ng, M.K., Zhao, X.L.: Non-local robust quaternion matrix completion for large-scale color image and video Inpainting. IEEE Trans. Image Process. 31, 3868–3883 (2022)

    Article  Google Scholar 

  18. Jia, Z., Niu, D.: An implicitly restarted refined bidiagonalization Lanczos method for computing a partial singular value decomposition. SIAM J. Matrix Anal. Appl. 25, 246–265 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jia, Z., Niu, D.: A refined harmonic Lanczos bidiagonalization method and an implicitly restarted algorithm for computing the smallest singular triplets of large matrices. SIAM J. Sci. Comput. 32, 714–744 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jia, Z., Li, C.: Harmonic and refined harmonic shift-invert residual Arnoldi and Jacobi-Davidson methods for interior eigenvalue problems. J. Comput. Appl. Math. 282, 83–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kokiopoulou, E., Bekas, C., Gallopoulos, E.: Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization. Appl. Numer. Math. 49, 39–61 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Morgan, R.B.: Computing interior eigenvalues of large matrices. Linear Algebra Appl. 154/156, 289–309 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Paige, C.C., Parlett, B.N., van der Vorst, H.A.: Approximate solutions and eigenvalue bounds from Krylov subspaces. Numer. Linear Algebra Appl. 2, 115–134 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pei, S.C., Cheng, C.M.: A novel block truncation coding of color images by using quaternion-moment-preserving principle. IEEE Int. Symp. Circ. Syst. 45, 583–595 (1997)

    Google Scholar 

  25. Larsen, R.M.: Lanczos bidiagonalization with partial reorthogonalization, Department of Computer Science, Aarhus University, Technical report DAIMI PB-357 (September 1998)

  26. Sangwine, S.J.: Fourier transforms of colour images using quaternion or hypercomplex numbers. Electron. Lett. 32, 1979–1980 (1996)

    Article  Google Scholar 

  27. Simon, H.D., Zha, H.: Low-rank matrix approximation using the Lanczos bidiagonalization process with applications. SIAM J. Sci Comput. 21, 2257–2274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Song, G.J., Ding, W.Y., Ng, M.K.: Low rank pure quaternion approximation for pure quaternion matrices. SIAM J. Matrix Anal. Appl. 42, 58–82 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wei, M., Li, Y., Zhang, F.X.: Zhao, J.L. Quaternion Matrix Computations, Nova Science Publishers (2018)

    Google Scholar 

  31. Fukuchi, K., Miyazato, K., Kimura, A., Takagi, S., Yamato, J.: Saliency-based video segmentation with graph cuts and sequentially updated priors,IEEE Int. Conf. Multimed. Expo. , pp. 638–641 (2009)

Download references

Acknowledgements

Thanks to Professor Michael K. Ng for the wonderful suggestions on the presentation of the paper. We would like to say thanks to Professor Ken Hayami and the anonymous referees for their useful commons and suggestions that are very helpful to improve the original presentation. The authors would like to dedicate this article to Prof. Musheng Wei on his 75th birthday.

Funding

This paper is supported in part by the National Natural Science Foundation of China under grants 12171210, 12090011 and 11771188.

Author information

Authors and Affiliations

Authors

Contributions

Z. Jia and M. Zhao wrote the first version of this paper; X. Liu and J. Zhu implemented the numerical experiments; X. Liu and Z. Jia contributed equally to this work; all authors reviewed the last version.

Corresponding authors

Correspondence to Xuan Liu or Meixiang Zhao.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Human and animal ethics

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submitted to the editors DATE.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Liu, X., Zhu, J. et al. Harmonic multi-symplectic Lanczos algorithm for quaternion singular triplets. Numer Algor 93, 1309–1335 (2023). https://doi.org/10.1007/s11075-022-01469-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01469-7

Keywords

Mathematics Subject Classification (2010)

Navigation