Skip to main content
Log in

A note on stability and fractal dimension of bivariate α-fractal functions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We study the continuous dependence of the so-called (bivariate) α-fractal function on the parameters such as the scaling function α, net △ of rectangular grid, and the base function s involved in its construction. Furthermore, we establish some results regarding its dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable

Code availability

Not applicable

References

  1. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 301–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnsley, M.F., Massopust, P.: Bilinear fractal interpolation and box dimension. J. Approx. Theory 192, 362–378 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beer, G.: Metric Spaces on which continuous functions are uniformly continuous and Hausdorff distance. Proc. Amer. Math. Soc. 95(4), 653–658 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouboulis, P., Dalla, L.: A general construction of fractal interpolation functions on grids of \(\mathbb {R}^{n}\). Eur. J. Appl. Math. 18(4), 449–476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouboulis, P., Dalla, L., Drakopoulos, V.: Construction of recurrent bivariate fractal interpolation surfaces and computation of their box-counting dimension. J. Approx. Theory 141(2), 99–117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carvalho, A.: Box dimension, oscillation and smoothness in function spaces. J. Funct. Spaces Appl. 3(3), 287–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casazza, P.G., Christensen, O.: Perturbation of operators and application to frame theory. J. Fourier Anal. Appl. 3(5), 543–557 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chand, A.K.B., Kapoor, G.P.: Hidden variable bivariate fractal interpolation surfaces. Fractals 11(03), 277–288 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655–676 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chandra, S., Abbas, S.: The calculus of bivariate fractal interpolation surfaces. Fractals 29(03), 2150145 (2021)

    Article  MATH  Google Scholar 

  11. Chandra, S., Abbas, S.: Analysis of mixed Weyl-Marchaud fractional derivative and Box dimensions. Fractals 29(6), 2150066 (2021)

    Article  MATH  Google Scholar 

  12. Dalla, L.: Bivariate fractal interpolation functions on grids. Fractals 10(1), 53–58 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deliu, A., Jawerth, B.: Geometrical dimension versus smoothness. Constr. Approx. 8(2), 211–222 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (1999)

    MATH  Google Scholar 

  15. Feng, Z.: Variation and Minkowski dimension of fractal interpolation surfaces. J. Math. Anal. Appl. 345(1), 322–334 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gal, S.G.: Shape-preserving Approximation by Real and Complex polynomials. Birkhäuser, Boston (2008)

    Book  MATH  Google Scholar 

  17. Geronimo, J. S., Hardin, D.: Fractal interpolation surfaces and a related 2-D multiresolution analysis. J. Math. Anal. Appl. 176(1), 561–586 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goldberger, A. L., Amaral, L. A., Hausdorff, J. M., Ivanov, P. C., Peng, C. K., Stanley, H. E.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. 99(suppl1), 2466–2472 (2002)

    Article  Google Scholar 

  19. Hutchinson, J.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jha, S., Verma, S.: Dimensional analysis of α-fractal functions. Results Math. 76(4), 1–24 (2021)

    Article  MathSciNet  Google Scholar 

  21. Jha, S., Chand, A.K.B., Navascués, M. A., Sahu, A.: Approximation properties of bivariate α-fractal functions and dimension results. Appl. Anal. 100(16), 3426–3444 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kong, Q.G., Ruan, H.-J., Zhang, S.: Box dimension of bilinear fractal interpolation surfaces. Bull. Aust. Math. Soc. 98(1), 113–121 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Leon-Ogazon, M. A., Romero-Flores, E. A., Morales-Acoltzi, T., Machorro-Rodriguez, A., Salazar-Medina, M.: Fractal interpolation in the financial analysis of a company. Int. J. Bus. Adm. 8, 80–86 (2017)

    Google Scholar 

  24. Li, Y.B., Xiao, H., Zhang, S.Y.: The wrinkle generation method for facial reconstruction based on extraction of partition wrinkle line features and fractal interpolation. In: Proc. 4th Int. Conf. Image Graph, pp 933–937 (2007)

  25. Malysz, R.: The Minkowski dimension of the bivariate fractal interpolation surfaces. Chaos Solitons fractals 27(5), 1147–1156 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Massopust, P.R.: Fractal surfaces. J. Math. Anal. Appl. 151(1), 275–290 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Massopust, P.: Fractal Functions, Fractal Surfaces, and Wavelets, 2nd edn. Academic Press, Cambridge (2016)

    MATH  Google Scholar 

  28. Metzer, W., Yun, C.H.: Construction of fractal interpolation surfaces on rectangular grids. Internat. J. Bifur. Chaos 20, 4079–4086 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Navascués, M. A.: Fractal approximation. Complex Anal. Oper. Theory 4(4), 953–974 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Navascués, M. A.: Fractal polynomial interpolation. Z. Anal. Anwend. 25(2), 401–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Navascués, M. A., Verma, S., Viswanathan, P.: Concerning the vector valued fractal interpolation functions on the sierpiński Gasket. Mediterr. J. Math. 18(5), 1–26 (2021)

    Article  MATH  Google Scholar 

  32. Păcurar, C. M., Necula, B.: R.:an analysis of COVID-19 spread based on fractal interpolation and fractal dimension. Chaos, Solitons Fractals 139, 110073 (2020)

    Article  MathSciNet  Google Scholar 

  33. Raubitzek, S., Neubauer, T.: A fractal interpolation approach to improve neural network predictions for difficult time series data. Expert Systems with Applications Expert Syst. Appl. 169, 114474 (2021)

    Article  Google Scholar 

  34. Ruan, H. -J., Xu, Q.: Fractal interpolation surfaces on rectangular grids. Bull. Aust. Math. Soc. 91(3), 435–446 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Verma, S., Viswanathan, P.: A fractal operator associated with bivariate fractal interpolation functions on rectangular grids. Results Math. 75(1), 1–26 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Verma, S., Viswanathan, P.: Bivariate functions of bounded variation: fractal dimension and fractional integral. Indag. Math. 31(2), 294–309 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Verma, S., Viswanathan, P.: Parameter identification for a class of bivariate fractal interpolation functions and constrained approximation. Num. Func. Anal. Opt. 41(9), 1109–1148 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vijender, N.: Bernstein fractal trigonometric approximation. Acta Appl Math. 159(1), 11–27 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. West, B. J., Goldberger, A. L.: Physiology in fractal dimensions. Am. Sci. 75(4), 354–365 (1987)

    Google Scholar 

  40. Xie, H., Sun, H.: The study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces. Fractals 5(4), 625–634 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, Y., Fan, Q., Bao, F., Liu, Y., Zhang, C.: Single-image super-resolution based on rational fractal interpolation. IEEE Trans. Image Process. 27(8), 3782–3797 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Each author contributed equally in this manuscript.

Corresponding author

Correspondence to V. Agrawal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, V., Som, T. & Verma, S. A note on stability and fractal dimension of bivariate α-fractal functions. Numer Algor 93, 1811–1833 (2023). https://doi.org/10.1007/s11075-022-01490-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01490-w

Keywords

Navigation