Skip to main content

Advertisement

Log in

Numerical solution to the exterior Bernoulli problem using the Dirichlet-Robin energy gap cost functional approach in two and three dimensions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The exterior Bernoulli problem — a prototype stationary free boundary problem — is rephrased into a shape optimization setting using an energy-gap type cost functional that is subject to two auxiliary problems: a pure Dirichlet problem and a mixed Dirichlet-Robin boundary value problem. It is demonstrated here that depending on what method is used, the shape gradient of the cost functional may appear in a different form. The dissimilarity in structure comes from the way the adjoint variable was utilized in the computation — then resulting to a different adjoint problem. The shape derivative is first obtained via Delfour-Zolésio’s minimax formulation, and then by using the weak form of the Eulerian derivative of the states coupled with the adjoint method. The latter approach is accomplished by first showing the existence of the derivatives. A fast iterative scheme based on finite element method is then formulated to numerically solve the proposed shape optimization formulation. The feasibility of the method — highlighting its efficiency and practicality — is illustrated through numerical examples in two and three dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. This case is often attributed to Kohn and Vogelius [24] since they were among the first to use the functional in the context of inverse problems.

  2. Here, it is understood that the minimization is carried out over some set of admissible domains. This admissible set will be specified at the beginning of Section 2.

  3. For a related study regarding the existence of such a derivative, but for the case of stationary nonlinear heat equation, one may refer to [37].

  4. For discussions about open sets of class \(\mathcal {C}^{k,l}\), \(k \in \mathbb {N}\), l ∈ (0, 1], see [39].

  5. A Lipschitz regularity for Γ is enough to establish the shape derivatives; however, for simplicity, we assume that Γ and Σ are both \(\mathcal {C}^{k,1}\) regular, where k = 1 or 2.

  6. The vector τ here represents the unit tangent vector on Σ.

  7. We have used here the identity \({\int \limits }_{\partial {\Omega }_{t}}{\varphi \partial _{\boldsymbol {n}}{\psi }}{ {d} s_{t}} = {\int \limits }_{{\Omega }_{t}}{(\varphi {\Delta } \psi + \nabla \varphi \cdot \nabla \psi )}{ {d} x_{t}}\), where we actually assumed that \(\varphi \in H^{2}({\Omega }_{t})\) and \(\psi \in {H_{0}^{1}}({\Omega }_{t}) \cap H^{2}({\Omega }_{t})\). The aforesaid higher regularity of the variables is justified in Step 2 of the proof.

  8. In a slightly more general case, the existence of (unique) weak solution to the variational form of the Robin problem (4) also follows from Lax-Milgram lemma provided, in particular, that the Robin term \(\beta :=\beta (x) \in L^{\infty }({\Sigma })\), and is positive almost everywhere in the free boundary (cf., e.g, [42, Lem. 7.36.3, p. 617]).

  9. In this method, a large enough set that contains all admissible transformations of Ω is introduced, making the Lagrangians involved in the formulation to admit non-singleton sets of saddle points.

  10. For more details about existence and uniqueness of solutions to mixed Robin-Dirichlet problems in Ws,2 for bounded domains in \(\mathbb {R}^{d}\), d ∈{2, 3}, one may consult [42, Sec. 7.36].

  11. From this point onwards, we occasionally use this notation to shorten some statements, and for brevity.

  12. A proof of this formula — also referred to as surface integration by parts formula — can be found in [49].

  13. Here, the notation \([\mathcal {X}(\cdot )]^{2}\) denotes the Sobolev space \([\mathcal {X}(\cdot )]^{2}:=\{\boldsymbol {\varphi }:=(\varphi _{1},\varphi _{2}) \mid \varphi _{1}, \varphi _{2} \in \mathcal {X}(\cdot )\}\) and is equipped with the norm \(\|\boldsymbol {\varphi }\|^{2}_{[\mathcal {X}(\cdot )]^{2}} = \|\varphi _{1}\|^{2}_{\mathcal {X}(\cdot )} + \|\varphi _{2}\|^{2}_{\mathcal {X}(\cdot )}\).

  14. See [52] for more discussion about discrete gradient flows for shape optimization.

  15. Observe that this follows the same narrative in computing the Sobolev gradient V using (48).

References

  1. Flucher, M., Rumpf, M.: Bernoulli’s free-boundary problem, qualitative theory and numerical approximation. J. Reine. Angew. Math. 486, 165–204 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Henrot, A., Shahgholian, H.: Existence of classical solutions to a free boundary problem for the p-Laplace operator, I: the exterior convex case. J. Reine Angew. Math. 521, 85–97 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Laurain, A., Privat, Y.: On a Bernoulli problem with geometric constraints. ESAIM Control Optim. Calc. Var. 18, 157–180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alt, A., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine. Angew. Math. 325, 105–144 (1981)

    MathSciNet  MATH  Google Scholar 

  5. Friedrichs, K.O.: ÜBer ein minimumproblem für potentialströmungen mit freiem rand. Math. Ann. 109, 60–82 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fasano, A.: Some free boundary problems with industrial applications. In: Leugering, G., Engell, S., Griewank, A., Hinze, M., Rannacher, R., Schulz, V., Ulbrich, M., Ulbrich, S. (eds.) Shape Optimization and Free Boundaries. NATO ASI Series (C: Mathematical and Physical Sciences), vol. 380, pp 113–142. Springer (1992)

  7. Eppler, K., Harbrecht, H.: Tracking Neumann data for stationary free boundary problems. SIAM J. Control Optim. 48, 2901–2916 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eppler, K., Harbrecht, H.: Tracking the Dirichlet data in L2 is an ill-posed problem. J. Optim. Theory Appl. 145, 17–35 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Haslinger, J., Ito, K., Kozubek, T., Kunish, K., Peichl, G.H.: On the shape derivative for problems of Bernoulli type. Interfaces Free Bound. 11, 317–330 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haslinger, J., Kozubek, T., Kunish, K., Peichl, G.H.: Shape optimization and fictitious domain approach for solving free-boundary value problems of Bernoulli type. Comput. Optim. Appl. 26(3), 231–251 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ito, K., Kunisch, K., Peichl, G.H.: Variational approach to shape derivative for a class of Bernoulli problem. J. Math. Anal. Appl. 314(2), 126–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rabago, J.F.T., Bacani, J.B.: Shape optimization approach to the Bernoulli problem: a Lagrangian formulation. IAENG Int. J. Appl. Math. 47, 417–424 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Rabago, J.F.T., Bacani, J.B.: Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: a Lagrangian formulation. Commun. Pur. Appl. Anal. 17, 2683–2702 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Abda, A.B., Bouchon, F., Peichl, G.H., Sayeh, M., Touzani, R.: A Dirichlet-Neumann cost functional approach for the Bernoulli problem. J. Eng. Math. 81, 157–176 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bacani, J.B.: Methods of shape optimization in free boundary problems. PhD thesis, karl-franzens-universität-graz, Graz Austria (2013)

  16. Bacani, J.B., Peichl, G.H.: On the first-order shape derivative of the Kohn-Vogelius cost functional of the Bernoulli problem. Abstr. Appl. Anal 2013, 19–384320 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bacani, J.B., Peichl, G.H.: Solving the Exterior Bernoulli problem using the shape derivative approach. In: Mohapatra, R., Giri, D., Saxena, P., Srivastava, P. (eds.) Mathematics and Computing 2013. Mathematics & Statistics, vol. 91, pp 251–269. Springer (2014)

  18. Eppler, K., Harbrecht, H.: On a Kohn-Vogelius like formulation of free boundary problems. Comput. Optim. App. 52, 69–85 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rabago, J.F.T., Azegami, H.: An improved shape optimization formulation of the Bernoulli problem by tracking the Neumann data. J. Eng. Math. 117, 1–29 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rabago, J.F.T., Azegami, H.: A new energy-gap cost functional cost functional approach for the exterior Bernoulli free boundary problem. Evol. Equ. Control Theory 8(4), 785–824 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rabago, J.F.T., Azegami, H.: A second-order shape optimization algorithm for solving the exterior Bernoulli free boundary problem using a new boundary cost functional. Comput. Opti. Appl. 77(1), 251–305 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cheng, X.L., Gong, R.F., Han, W., Zheng, X.: A novel coupled complex boundary method for solving inverse source problems. Inverse Problems 055002 (2014)

  23. Rabago, J.F.T.: On the new coupled complex boundary method in shape optimization framework for solving stationary free boundary problems. Math. Cotrol Relat Fields. https://doi.org/10.3934/mcrf.2022041 (2022)

  24. Kohn, R., Vogelius, M.: Relaxation of a variational method for impedance computed tomography. Commun. Pure Appl. Math. 40(6), 745–777 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bacani, J.B., Rabago, J.F.T.: On the second-order shape derivative of the Kohn-Vogelius objective functional using the velocity method. Int. J. Differ. Equ. 2015, 10–954836 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Haslinger, J., Kozubek, T., Kunisch, K., Peichl, G.H.: An embedding domain approach for a class of 2-d shape optimization problems: mathematical analysis. J. Math. Anal. Appl. 209(2), 665–685 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization. Theory, Approximation, and Computation. SIAM (2003)

  28. Boulkhemair, A., Chakib, A.: On the uniform poincaré inequality. Comm. Partial Diff. Equ. 32, 1439–1447 (2007)

    Article  MATH  Google Scholar 

  29. Boulkhemair, A., Nachaoui, A., Chakib, A.: Uniform trace theorem and application to shape optimization. Appl. Comput. Math. 7, 192–205 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Boulkhemair, A., Nachaoui, A., Chakib, A.: A shape optimization approach for a class of free boundary problems of Bernoulli type. Appl. Math. 58, 205–221 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Holzleitner, L.: Hausdorff convergence of domains and their boundaries for shape optimal design. Control Cybern. 30(1), 23–44 (2001)

    MATH  Google Scholar 

  32. Chenais, D.: On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52, 189–219 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bacani, J.B.: On the shape gradient and shape hessian of a shape functional subject to Dirichlet and Robin conditions. Appl. Math. Sci. 8(108), 5387–5397 (2014)

    MathSciNet  Google Scholar 

  34. Delfour, M.C., Zolésio, J. -P.: Shape sensitivity analysis by min-max differentiability. SIAM J. Control Optim. 26(4), 834–862 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries: Metrics, Analysis, Differential Calculus, And Optimization, 2nd edn. Adv. Des. Control, vol. 22 SIAM (2011)

  36. Ito, K., Kunisch, K., Peichl, G.H.: Variational approach to shape derivatives. ESAIM Control Optim. Calc. Var. 14, 517–539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dziri, R., Zolésio, J. -R.: Shape-sensitivity analysis for nonlinear heat convection. Appl. Math. Optim. 35, 1–20 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Harbrecht, H.: A Newton method for Bernoulli’s free boundary problem in three dimensions. Computing (2008) 82, 11–30 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Fiorenza, R.: Hölder and Locally Hölder Continuous Functions, and Open Sets of Class ck, ck,λ Birkhaüser (2017)

  40. Delfour, M.C., Zolésio, J. -P.: Anatomy of the shape Hessian. Annali di Matematica 159(1), 315–339 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland Publishing Co (1976)

  42. Medková, D.: The Laplace Equation: Boundary Value Problems on Bounded and Unbounded Lipschitz Domains. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  43. Correa, R., Seeger, A.: Directional derivative of a mimimax function. Nonlinear Anal. 9, 13–22 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kashiwabara, T., Colciago, C.M., Dedè, L., Quarteroni, A.: Well-posedness, regularity, and convergence analysis of the finite element approximation of a generalized Robin boundary value problem. SIAM J. Numer. Anal. 53, 105–126 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Henrot, A., Pierre, M.: Shape Variation and Optimization: A Geometrical Analysis. Tracts in Mathematics, vol. 28. European Mathematical Society, Zurich (2018)

    Book  MATH  Google Scholar 

  46. Sokołowski, J., Zolésio, J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer Series in Computational Mathematics. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  47. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Pure and Applied Mathematics, vol. 140. Academic Press, Amsterdam (2003)

    Google Scholar 

  48. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1988)

    MATH  Google Scholar 

  49. Murat, F., Simon, J.: Sur Le Contrôle Par Un Domaine Géométrique Research Report. 76015, Univ. Pierre et Marie Curie, Paris (1976)

  50. Tiihonen, T.: Shape optimization and trial methods for free boundary problems. RAIRO Modél. Math. Anal. Numér. 31, 805–825 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  51. Neuberger, J.W.: Sobolev Gradients and Differential Equations. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  52. Doǧan, G., Morin, P., Nochetto, R.H., Verani, M.: Discrete gradient flows for shape optimization and applications. Comput. Methods Appl. Mech. Engrg. 196, 3898–3914 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. Eppler, K., Harbrecht, H.: Efficient treatment of stationary free boundary problems. Appl. Numer. Math. 56, 1326–1339 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  54. Rabago, J.F.T., Azegami, H.: Shape optimization approach to defect-shape identification with convective boundary condition via partial boundary measurement. J.pan J. Indust. Appl. Math. 31(1), 131–176 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Morin, P., Nochetto, R.H., Pauletti, M.S., Verani, M.: Adaptive finite element method for shape optimization. ESAIM Control Optim. Calc. Var. 18, 1122–1149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support from JST CREST Grant Number JPMJCR2014. He also wishes to thank the two anonymous referees for their stimulating comments, constructive criticisms, and a number useful suggestions which greatly improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius Fergy T. Rabago.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Data sharing

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Correa-Seeger theorem

Appendix. Correa-Seeger theorem

Let ε > 0 be a fixed real number and consider a functional

$$ G:[0,{\varepsilon}]\times X \times Y \to \mathbb{R}, $$

for some topological spaces X and Y. For each t ∈ [0,ε], we define

$$ M(t) := \min_{x\in X} \sup_{y\in Y} G(t,x,y) \quad\text{and}\quad m(t) = \sup_{y\in Y} \min_{x\in X} G(t,x,y), $$

and the associated sets

$$ \begin{array}{@{}rcl@{}} X(t) &:= \left\{ \hat{x} \in X : \sup\limits_{y\in Y} G(t,\hat{x}, y) = M(t)\right\}\\ Y(t) &:= \left\{ \hat{y} \in Y : \min\limits_{x\in X} G(t,x,\hat{y}) = m(t)\right\}. \end{array} $$

We introduce the set of saddle points

$$ S(t)=\{(\hat{x},\hat{y})\in X\times Y : M(t) = G(t, \hat{x}, \hat{y}) = m(t)\}, $$

which may be empty. In general, we always have the inequality \(m(t) \leqslant M(t)\), and when m(t) = M(t), the set S(t) is exactly X(t) × Y (t).

We have the following theorem (see [35, Thm. 5.1, pp. 556–559]).

Theorem A.1 (Correa and Seeger, [43])

Let the sets X and Y, the real number ε > 0, and the functional \(G: [0,{\varepsilon }] \times X \times Y \to \mathbb {R}\) be given. Assume that the following assumptions hold:

(H1):

for \(0 \leqslant t \leqslant {\varepsilon }\), the set S(t) is non-empty;

(H2):

the partial derivative tG(t,x,y) exists everywhere in [0,ε], for all \((x,y) \in \left (\bigcup _{t \in [0,\varepsilon ]} X(t) \times Y(0) \right ) \bigcup \left (X(0) \times \bigcup _{t \in [0,\varepsilon ]} Y(t) \right )\);

(H3):

there exists a topology \(\mathcal {T}_{X}\) on X such that for any sequence \(\{t_{n} : 0 < t_{n} \leqslant {\varepsilon }\}, t_{n} \to t_{0} = 0\), there exist an x0X(0) and a subsequence \(\{t_{n_{k}} \}\) of {tn}, and for each \(k \geqslant 1\), there exists \(x_{n_{k}} \in X(t_{n_{k}})\) such that (i) \(x_{n_{k}} \to x^{0}\) in the \(\mathcal {T}_{X}\)-topology, and (ii) for all y in Y (0), \(\liminf _{t\searrow 0,\ k \to \infty } \partial _{t}G(t, x_{n_{k}} , y) \geqslant \partial _{t}G(0, x^{0}, y)\);

(H4):

there exists a topology \(\mathcal {T}_{Y}\) on Y such that for any sequence \(\{t_{n} : 0 < t_{n} \leqslant {\varepsilon }\}, t_{n} \to t_{0} = 0\), there exist y0Y (0) and a subsequence \(\{t_{n_{k}} \}\) of {tn}, and for each \(k \geqslant 1\), there exists \(y_{n_{k}} \in Y(t_{n_{k}})\) such that (i) \(y_{n_{k}} \to y^{0}\) in the \(\mathcal {T}_{Y}\)-topology, and (ii) for all x in X(0), \(\limsup _{t\searrow 0,\ k \to \infty } \partial _{t}G(t, x, y_{n_{k}}) \leqslant \partial _{t}G(0, x, y^{0})\);

Then, there exists (x0,y0) ∈ X(0) × Y (0) such that

$$ {d}g(0) = \min_{x\in X(0)} \sup_{y\in Y(0)} \partial_{t}G(0, x, y) = \partial_{t}G(0, x^{0}, y^{0}) = \sup_{y\in Y(0)} \min_{x\in X(0)} \partial_{t}G(0,x,y). $$

Thus, (x0,y0) is a saddle point of tG(0,x,y) on X(0) × Y (0).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabago, J.F.T. Numerical solution to the exterior Bernoulli problem using the Dirichlet-Robin energy gap cost functional approach in two and three dimensions. Numer Algor 94, 175–227 (2023). https://doi.org/10.1007/s11075-023-01497-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01497-x

Keywords

Mathematics Subject Classification (2010)

Navigation