Skip to main content
Log in

Virtual element method for nonlinear Sobolev equation on polygonal meshes

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this work, the virtual element method (VEM) on convex polygonal meshes for the nonlinear Sobolev equations is developed, where the semi-discrete and fully discrete formulations are presented and analyzed. To overcome the complexity of nonlinear terms, the nonlinear coefficient is approximated by employing the orthogonal \(\varvec{L^{2}} \) projection operator, which is directly computable from the degrees of freedom. Under some assumptions about the nonlinear coefficient, the existence and uniqueness of the semi-discrete solution are analyzed. Furthermore, a priori error estimate showing optimal order of convergence with respect to the \(\varvec{H^{1}}\) semi-norm was derived. Finally, some numerical experiments are conducted to illustrate the theoretical convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the manuscript. Raw data that support the finding of this study are available from the corresponding author, upon reasonable request.

References

  1. Barenblatt, G.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. Prikl. Mat. Mekh. 24(5), 852–864 (1960)

    MATH  Google Scholar 

  2. Ting, T.W.: A cooling process according to two-temperature theory of heat conduction. J. Math. Anal. Appl. 45(1), 23–31 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ting, T.W.: Certain non-steady flows of second-order fluids. Archive for Rational Mechanics and Analysis 14(1), 1–26 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  4. Davis, P.L.: A quasilinear parabolic and a related third order problem. J. Math. Anal. Appl. 40(2), 327–335 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ewing, R.E.: Time-stepping galerkin methods for nonlinear sobolev partial differential equations. SIAM Journal on Numerical Analysis 15(6), 1125–1150 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Showalter, R.: Existence and representation theorems for a semilinear sobolev equation in banach space. SIAM Journal on Mathematical Analysis 3(3), 527–543 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lin, Y.: Galerkin methods for nonlinear Sobolev equations. Aequationes Mathematicae 40(1), 54–66 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Nakao, M.T.: Error estimates of a galerkin method for some nonlinear Sobolev equations in one space dimension. Numerische Mathematik 47(1), 139–157 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lin, Y., Zhang, T.: Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions. Journal of Mathematical Analysis and Applications 165(1), 180–191 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gu, H.: Characteristic finite element methods for nonlinear Sobolev equations. Appl. Math. Comput. 102(1), 51–62 (1999)

    MathSciNet  Google Scholar 

  11. Chen, C., Li, K., Chen, Y., Huang, Y.: Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations. Adv. Comput. Math. 45(2), 611–630 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dongyang, S., Fengna, Y., Junjun, W.: Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation. Appl. Math. Comput. 274, 182–194 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Gao, F., Rui, H.: A split least-squares characteristic mixed finite element method for Sobolev equations with convection term. Math. Comput. Simulation 80(2), 341–351 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shi, D., Tang, Q., Gong, W.: A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term. Math. Comput. Simulation 114, 25–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, J., Li, Q.: Superconvergence analysis of a linearized three-step backward differential formula finite element method for nonlinear Sobolev equation. Math. Methods Appl. Sci. 42(9), 3359–3376 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ohm, M.-R., Lee, H.-Y.: L 2-error analysis of fully discrete discontinuous Galerkin approximations for nonlinear Sobolev equations. Bulletin of the Korean Mathematical Society 48(5), 897–915 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun, T., Yang, D.: A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations. Appl. Math. Comput. 200(1), 147–159 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Xie, C.-M., Feng, M.-F., Luo, Y., Zhang, L.: A hybrid high-order method for Sobolev equation with convection-dominated term. Computers & Mathematics with Applications 118, 85–94 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Mathematical Models and Methods in Applied Sciences 23(01), 199–214 (2013)

  20. Da Veiga, L.B., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM Journal on Numerical Analysis 51(2), 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Computer Methods in Applied Mechanics and Engineering 282, 132–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Antonietti, P.F., Da Veiga, L.B., Mora, D., Verani, M.: A stream virtual element formulation of the stokes problem on polygonal meshes. SIAM Journal on Numerical Analysis 52(1), 386–404 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. da Veiga, L.B., Lovadina, C., Vacca, G.: Divergence free virtual elements for the stokes problem on polygonal meshes. ESAIM: Mathematical Modelling and Numerical Analysis 51(2), 509–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Da Veiga, L.B., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mechanics Eng. 295, 327–346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chi, H., Da Veiga, L.B., Paulino, G.: Some basic formulations of the virtual element method (vem) for finite deformations. Comput. Methods Appl. Mechanics Eng. 318, 148–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Da Veiga, L.B., Brezzi, F., Dassi, F., Marini, L.D., Russo, A.: Virtual element approximation of 2d magnetostatic problems. Comput. Methods Appl. Mechanics Eng. 327, 173–195 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. da Veiga, L.B., Brezzi, F., Dassi, F., Marini, L., Russo, A.: Lowest order virtual element approximation of magnetostatic problems. Comput. Methods Appl. Mechanics Eng. 332, 343–362 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. da Veiga, L.B., Dassi, F., Manzini, G., Mascotto, L.: Virtual elements for Maxwell’s equations. Computers & Mathematics with Applications 116, 82–99 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wriggers, P., Rust, W.T., Reddy, B.: A virtual element method for contact. Computational Mechanics 58(6), 1039–1050 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numerical Methods for Partial Differential Equations 31(6), 2110–2134 (2015)

  31. Vacca, G.: Virtual element methods for hyperbolic problems on polygonal meshes. Computers & Mathematics with Applications 74(5), 882–898 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, B., Zhao, J., Chen, S.: Virtual element method for the sobolev equations. Mathematical Methods in the Applied Sciences (2022)

  33. Adak, D., Natarajan, S.: Virtual element method for a nonlocal elliptic problem of Kirchhoff type on polygonal meshes. Computers & Mathematics with Applications 79(10), 2856–2871 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Da Veiga, L.B., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM Journal on Numerical Analysis 56(3), 1210–1242 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Cangiani, A., Chatzipantelidis, P., Diwan, G., Georgoulis, E.H.: Virtual element method for quasilinear elliptic problems. IMA Journal of Numerical Analysis 40(4), 2450–2472 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Adak, D., Natarajan, E., Kumar, S.: Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes. Numerical Methods for Partial Differential Equations 35(1), 222–245 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Adak, D., Natarajan, E., Kumar, S.: Virtual element method for semilinear hyperbolic problems on polygonal meshes. Int. J. Comput. Math. 96(5), 971–991 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA Journal of Numerical Analysis 37(3), 1317–1354 (2017)

  39. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chen, Y., Hu, H.: Two-grid method for miscible displacement problem with dispersion by finite element method of characteristics. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 101(3), 201900275 (2021)

  41. Yu, Y.: mVEM: MATLAB Programming for Virtual Element Methods (2019-2022). https://github.com/Terenceyuyue/mVEM

Download references

Acknowledgements

The authors wish to thank the anonymous referees for their remarks that contributed to improve the presentation.

Funding

This work is supported by the State Key Program of National Natural Science Foundation of China (11931003) and National Natural Science Foundation of China (41974133), Hunan Provincial Innovation Foundation for Postgraduate (XDCX2022Y065, XDCX2021B098), and Postgraduate Scientific Research Innovation Project of Hunan Province (CX20220639, CX20210597).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the manuscript as follows: Wanxiang Liu: designing research plans, conducting numerical experiments and wrote the main manuscript text; Yanping Chen and Yunqing Huang: feasibility analysis of research scheme and revision of paper; Qiling Gu: collated documents and participated in writing papers. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Yanping Chen.

Ethics declarations

Ethical approval

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Chen, Y., Gu, Q. et al. Virtual element method for nonlinear Sobolev equation on polygonal meshes. Numer Algor 94, 1731–1761 (2023). https://doi.org/10.1007/s11075-023-01553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01553-6

Keywords

Navigation