Abstract
This paper investigates the space-time residual-based a posteriori error bounds of the mixed finite element method for the optimal control problem governed by the parabolic equation in a bounded convex domain. For the spatial discretization of the state and co-state variables, the lowest-order Raviart-Thomas spaces are utilized, although for the control variable, variational discretization technique is used. The backward-Euler implicit method is applied for temporal discretization. To provide a posteriori error estimates for the state and control variables in the \(L^{\infty }(L^2)\)-norm, an elliptic reconstruction approach paired with an energy strategy is utilized. The reliability and efficiency of the a posteriori error estimators are discussed. The effectiveness of the estimators is finally confirmed through the numerical tests.



Similar content being viewed by others
Data availability
The authors do not analyze or generate any datasets, because our work proceeds within a theoretical and mathematical approach. One can obtain the relevant materials from the references below.
References
Adams, R.A., Fournier, J.J.F.: Sobolev spaces, pure and applied mathematics. Elsevier, Amsterdam (2003)
Alt, W., Mackenroth, U.: Convergence of finite element approximations to state constrained convex parabolic boundary control problems. SIAM J. Control Optim. 27, 718–736 (1987)
Araya, R., Venegas, P.: An a posteriori error estimator for an unsteady advection diffusion reaction problem. Comput. Math. Appl. 66, 2456–2476 (2014)
Babuška, I., Ohnimus, S.: A posteriori error estimation for the semidiscrete finite element method of parabolic partial differential equations. Comput. Meth. Appl. Mech. Engrg. 190, 4691–4712 (2001)
Bieterman, M., Babuška, I.: The finite element method for parabolic equations, 1: a posteriori error estimation. Numer. Math. 40, 339–371 (1982)
Bieterman, M., Babuška, I.: The finite element method for parabolic equations, 2: a posteriori error estimation and adaptive approach. Numer. Math. 40, 373–406 (1982)
Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Springer, New York (2008)
Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M.: Mixed finite elements, compatibility conditions and applications. Springer, Italy (2006)
Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer-Verlag, Berlin (1991)
Chen, Y.: Superconvergence of mixed finite elements methods for optimal control problems. Math. Comp. 77, 1269–1291 (2008)
Chen, Y., Huang, Y., Liu, W.B., Yan, N.: Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. J. Sci. Comput. 42, 382–403 (2009)
Chen, Y., Liu, W.: A posteriori error estimates for mixed finite element solutions of convex optimal control problems. J. Comp. Appl. Math. 211, 76–89 (2008)
Chen, Y., Liu, L., Lu, Z.: A posteriori error estimates of mixed methods for parabolic optimal control problems. Numer. Funct. Anal. Optim. 31, 1135–1157 (2010)
Chen, Y., Lu, Z.: High efficient and accuracy numerical methods for optimal control problems. Science Press, Beijing (2015)
Clément, P.: Approximation by finite element function using local regularization. RAIRO Sér. Rouge Anal. Numér. 2, 77–84 (1975)
Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems 1: a linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991)
Falk, F.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)
Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)
Hinze, M.: A variational discretization concept in control constrained optimization: the linear quadratic case. Comput. Optim. Appl. 30, 45–63 (2005)
Hou, T., Chen, Y.: Mixed discontinuous Galerkin time-stepping method for linear parabolic problems. J. Comput. Math. 33, 158–178 (2015)
Johnson, C., Nie, Y.Y., Thomée, V.: An a posteriori error estimate and adaptive time step control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27, 277–291 (1990)
Johnson, C., Thomée, V.: Error estimates for some mixed finite elements methods for parabolic type problems. RAIRO Analyse Numerique. 15, 41–78 (1981)
Lakkis, O., Makridakis, C.: Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comp. 75, 1627–1658 (2006)
Lasiecka, I.: Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions. SIAM J. Control Optim. 22, 477–500 (1984)
Lasiecka, I., Malanowski, K.: On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systems. Control Cybernet. 7, 21–36 (1978)
Li, L.: Mixed discontinuous Galerkin time-stepping method for semilinear parabolic optimal control problems. Comput. Math. Model. 27, 95 (2016)
Lions, J.L.: Optimal control of systems governed by parabolic differential equations. Springer-Verlag, Berlin (1971)
Liu, W., Yan, N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93, 497–521 (2003)
Lu, Z.: New a posteriori \(L^\infty (L^2)\) and \(L^2(L^2)\)-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems. Appl. Math. 61, 135–163 (2016)
Makridakis, C., Nochetto, R.H.: Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41, 1585–1594 (2003)
Manohar, R., Sinha, R.K.: A posteriori error estimates for parabolic optimal control problems with controls acting on lower dimensional manifolds. J. Sci. Comput. 89, 39 (2021)
McKnight, R.S., Bosarge, W.E., Jr.: The Ritz-Galerkin procedure for parabolic control problems. SIAM J. Control Optim. 11, 510–524 (1973)
Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems Part II: problems with control constraints. SIAM J. Control Optim. 47, 1301–1329 (2008)
Menon, S., Nataraj, N., Pani, A.K.: An a posteriori error analysis of a mixed finite element Galerkin approximation to second order linear parabolic problems. SIAM J. Numer. Anal. 50, 1367–1393 (2012)
Neittaanmäki, P.: Tiba, D.: Optimal control of nonlinear parabolic systems: theory, algorithms and applications, Dekker: New York (1994)
Nochetto, R.H., Savare, G., Verdi, C.: A posteriori error estimates for variable time step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53, 525–589 (2000)
Manohar, R., Sinha, R.K.: A posteriori \(L^{\infty }(L^{\infty })\) error estimates for finite element approximations to parabolic optimal control problems. Comput. Appl. Math. 40, 298 (2021)
Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems, vol. 606, pp. 292–315. Springer, Berlin (1977)
Shakya, P., Sinha, R.K.: A priori and a posteriori error estimates of finite element approximations for elliptic optimal control problem with measure data. Optim. Control Appl. Meth. 40, 241–264 (2019)
Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary condiition. Math. Comp. 54, 483–493 (1990)
Tang, Y., Hua, Y.: Elliptic reconstruction and a posteriori error estimates for parabolic optimal control problems. J. Appl. Anal. Comp. 4, 295–306 (2014)
Thomée, V.: Galerkin finite element methods for parabolic problems, 2nd edn, Verlag (2006)
Verfürth, R.: A posteriori error estimates and adaptive mesh refinement techniques. J Comput. Appl. Math. 50, 67–83 (1994)
Tröltzsch, F.: Optimal control of partial differential equations, Theory. Methods and Applications. AMS, Providence, RI (2010)
Verfürth, R.: A posteriori error estimates for nonlinear problems: \(L^r(0, T;W^{1, \rho }({\Omega }))\)-error estimates for finite element discretization of parabolic equations. Numer. Methods Partial Differ. Equ. 14, 487–518 (1998)
Verfürth, R.: A posteriori error estimates for nonlinear problems: \(L^{\rho }({\Omega })\)-error estimates for finite element discretization of parabolic equations. Math. Comp. 67, 1335–1360 (1998)
Wheeler, M.F.: A priori \(L^{2}\)-error estimates for Galerkin approximations to parabolic differential equations. SIAM J. Numer. Anal. 10, 723–749 (1973)
Acknowledgements
The first author would like to thank the Department of Science and Technology (DST) for providing financial assistance under the scheme National Post-Doctoral Fellowship (PDF/2021/000444), New Delhi, India. Finally, the authors acknowledge the valuable comments and constructive suggestions made by the referees that led to the improvement of the content of the manuscript.
Funding
Under the scheme of National Post-Doctoral Fellowship (PDF/2021/000444) by the Department of Science and Technology (DST), India.
Author information
Authors and Affiliations
Contributions
Both authors contributed equally to this work.
Corresponding author
Ethics declarations
Ethical approval
Not applicable
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shakya, P., Kumar Sinha, R. Analysis for the space-time a posteriori error estimates for mixed finite element solutions of parabolic optimal control problems. Numer Algor 96, 879–924 (2024). https://doi.org/10.1007/s11075-023-01669-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-023-01669-9
Keywords
- A posteriori error estimates
- Mixed finite element method
- Parabolic optimal control problems
- The backward-Euler method
- Variational discretization