Skip to main content
Log in

Maximum bound principle for matrix-valued Allen-Cahn equation and integrating factor Runge-Kutta method

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The matrix-valued Allen-Cahn (MAC) equation was first introduced as a model problem of finding the stationary points of an energy for orthogonal matrix-valued functions and has attracted much attention in recent years. It is well known that the MAC equation satisfies the maximum bound principle (MBP) with respect to either the matrix 2-norm or the Frobenius norm, which plays a key role in understanding the physical meaning and the wellposedness of the model. To preserve this property, we extend the explicit integrating factor Runge-Kutta (IFRK) method to the MAC equation. Moreover, we construct a new three-stage third-order and a new four-stage fourth-order IFRK schemes based on the classical Runge-Kutta schemes. Under a reasonable time-step constraint, we prove the MBP preservation of the IFRK method with respect to the matrix 2-norm, based on which, we further establish their optimal error estimates in the matrix 2-norm. Although numerical results indicate that the IFRK method preserves the MBP with respect to the Frobenius norm, a detailed analysis shows that it is hard to prove this preservation by using the same approach for the case of 2-norm. Several numerical experiments are carried out to test the convergence of the IFRK schemes and to verify the MBP preservation with respect to the matrix 2-norm and the Frobenius norm, respectively. Energy stability is also observed, which clearly indicates the orthogonality of the stationary solution of the MAC equation. In addition, we simulate the coarsening dynamics to verify the motion law of the interface for different initial conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of supporting data

The datasets supporting the results of this article are included within the article and its additional files.

References

  1. Batard, T., Bertalmio, M.: On covariant derivatives and their applications to image regularization. SIAM J. Imaging Sci. 7, 2393–2422 (2014)

    MathSciNet  Google Scholar 

  2. Berkels, B., Ratz, A., Rumpf, M., Voigt, A.: Extracting grain boundaries and macroscopic deformations from images on atomic scale. J. Sci. Comput. 35, 1–23 (2008)

    MathSciNet  Google Scholar 

  3. Bacak, M., Bergmann, R., Steidl, G., Weinmann, A.: A second order nonsmooth variational model for restoring manifold-valued images. SIAM J. Sci. Comput. 38, A567–A597 (2016)

    MathSciNet  Google Scholar 

  4. Butcher, J.: Numerical methods for ordinary differential equations, 2nd edn. Wiley, Chichester (2008)

    Google Scholar 

  5. Burman, E., Ern, A.: Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence. Math. Comp. 74, 1637–1652 (2005)

    MathSciNet  Google Scholar 

  6. Chen, W., Wang, C., Wang, X., Wise, S.: Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential. J. Comput. Phys. X 3, 100031 (2019)

    MathSciNet  Google Scholar 

  7. Ciarlet, P.: Discrete maximum principle for finite-difference operators. Aequationes Math. 4, 338–352 (1970)

    MathSciNet  Google Scholar 

  8. Ciarlet, P., Raviart, P.: Maximum principle and uniform convergence for the finite element method. Comput. Methods Appl. Mech. Engrg. 2, 17–31 (1973)

    MathSciNet  Google Scholar 

  9. Cox, S., Matthews, P.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    MathSciNet  Google Scholar 

  10. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation. SIAM J. Numer. Anal. 57, 875–898 (2019)

    MathSciNet  Google Scholar 

  11. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes. SIAM Rev. 63, 317–359 (2021)

    MathSciNet  Google Scholar 

  12. Du, Q., Zhu, W.: Stability analysis and application of the exponential time differencing schemes. J. Comput. Math. 22, 200–209 (2004)

    MathSciNet  Google Scholar 

  13. Du, Q., Zhu, W.: Analysis and applications of the exponential time differencing schemes and their contour integration modifications. BIT. 45, 307–328 (2005)

    MathSciNet  Google Scholar 

  14. Eyre, D.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. Computational and mathematical models of microstructural evolution (San Francisco, CA, 1998), 39C46, Mater. Res. Soc. Sympos. Proc., 529, MRS, Warrendale, PA (1998)

  15. Elsey, M., Wirth, B.: A simple and efficient scheme for phase field crystal simulation. ESAIM Math. Model. Numer. Anal. 47, 1413–1432 (2013)

    MathSciNet  Google Scholar 

  16. Elsey, M., Wirth, B.: Fast automated detection of crystal distortion and crystal defects in polycrystal images. Multiscale Model. Simul. 12, 1–24 (2014)

    MathSciNet  Google Scholar 

  17. Evans, L., Soner, H., Souganidis, P.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45, 1097–1123 (1992)

    MathSciNet  Google Scholar 

  18. Fei, M., Lin, F., Wang, W., Zhang, Z.: Matrix-valued Allen-Cahn equation and the Keller-Rubinstein-Sternberg problem. Invent. math. (2023)

  19. Fu, Z., Yang, J.: Energy-decreasing exponential time differencing Runge-Kutta methods for phase-field models. J. Comput. Phys. 454, 110943 (2022)

    MathSciNet  Google Scholar 

  20. Hochbruck, M., Ostermann, A.: Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43, 1069–1090 (2005)

    MathSciNet  Google Scholar 

  21. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    MathSciNet  Google Scholar 

  22. Hou, T., Leng, H.: Numerical analysis of a stabilized Crank-Nicolson/Adams-Bashforth finite difference scheme for Allen-Cahn equations. Appl. Math. Lett. 102, 106150 (2020)

    MathSciNet  Google Scholar 

  23. Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)

    MathSciNet  Google Scholar 

  24. Hou, T., Xiu, D., Jiang, W.: A new second-order maximum-principle preserving finite difference scheme for Allen-Cahn equations with periodic boundary conditions. Appl. Math. Lett. 104, 106265 (2020)

    MathSciNet  Google Scholar 

  25. Ju, L., Li, X., Qiao, Z., Yang, J.: Maximum bound principle preserving integrating factor Runge-Kutta methods for semilinear parabolic equations. J. Comput. Phys. 439, 110405 (2021)

    MathSciNet  Google Scholar 

  26. Ju, L., Zhang, J., Du, Q.: Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations. Comput. Mater. Sci. 108, 272–282 (2015)

    Google Scholar 

  27. Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62, 431–455 (2015)

    MathSciNet  Google Scholar 

  28. Li, J., Li, X., Ju, L., Feng, X.: Stabilized integrating factor Runge-Kutta method and unconditional preservation of maximum bound principle. SIAM J. Sci. Comput. 43, A1780–A1802 (2021)

    MathSciNet  Google Scholar 

  29. Liu, F., Shen, J.: Stabilized semi-implicit spectral deferred correction methods for Allen-Cahn and Cahn-Hilliard equations. Math. Methods Appl. Sci. 38, 4564–4575 (2015)

    MathSciNet  Google Scholar 

  30. Li, D., Qiao, Z., Tang, T.: Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM J. Numer. Anal. 54, 1653–1681 (2016)

    MathSciNet  Google Scholar 

  31. Nan, C., Song, H.: The high-order maximum-principle-preserving integrating factor Runge-Kutta methods for nonlocal Allen-Cahn equation. J. Comput. Phys. 456, 111028 (2022)

    MathSciNet  Google Scholar 

  32. Osting, B., Wang, D.: Diffusion generated methods for denoising target-valued images. Inverse Probl. Imag. 14, 205–232 (2020)

    MathSciNet  Google Scholar 

  33. Osting, B., Wang, D.: A diffusion generated method for orthogonal matrix-valued fields. Math. Comp. 89, 515–550 (2020)

    MathSciNet  Google Scholar 

  34. Peng, G., Gao, Z., Feng, X.: A stabilized extremum-preserving scheme for nonlinear parabolic equation on polygonal meshes. Internats. J. Numer. Methods Fluids 90, 340–356 (2019)

    MathSciNet  Google Scholar 

  35. Peng, G., Gao, Z., Yan, W., Feng, X.: A positivity-preserving nonlinear finite volume scheme for radionuclide transport calculations in geological radioactive waste repository. Internat. J. Numer. Methods Heat Fluid Flow 30, 516–534 (2019)

  36. Rosman, G., Tai, X., Kimmel, R., Bruckstein, A.: Augmented-Lagrangian regularization of matrix-valued maps. Methods Appl. Anal. 21, 105–121 (2014)

    MathSciNet  Google Scholar 

  37. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (sav) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    MathSciNet  Google Scholar 

  38. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)

    MathSciNet  Google Scholar 

  39. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. A 28, 1669–1691 (2010)

    MathSciNet  Google Scholar 

  40. Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen-Cahn equation. Commun. Math. Sci. 14, 1517–1534 (2016)

    MathSciNet  Google Scholar 

  41. Song, H., Shu, C.: Unconditional energy stability analysis of a second order implicit-explicit local discontinuous Galerkin method for the Cahn-Hilliard equation. J. Sci. Comput. 73, 1178–1203 (2017)

    MathSciNet  Google Scholar 

  42. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math. 34, 471–481 (2016)

    MathSciNet  Google Scholar 

  43. Varga, R.: On a discrete maximum principle. SIAM J. Numer. Anal. 3, 355–359 (1966)

    MathSciNet  Google Scholar 

  44. Wang, X., Ju, L., Du, Q.: Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316, 21–38 (2016)

    MathSciNet  Google Scholar 

  45. Wise, S., Wang, C., Lowengrub, J.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

    MathSciNet  Google Scholar 

  46. Wang, D., Osting, B., Wang, X.: Interface dynamics for an Allen-Cahn-type equation governing a matrix-valued field. Multiscale Model. Simul. 17, 1252–1273 (2019)

    MathSciNet  Google Scholar 

  47. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)

    MathSciNet  Google Scholar 

  48. Xiao, X., Dai, Z., Feng, X.: A positivity preserving characteristic finite element method for solving the transport and convection-diffusion-reaction equations on general surfaces. Comput. Phys. Commun. 247, 106941 (2020)

    MathSciNet  Google Scholar 

  49. Xiao, X., Feng, X., He, Y.: Numerical simulations for the chemotaxis models on surfaces via a novel characteristic finite element method. Comput. Math. Appl. 78, 20–34 (2019)

    MathSciNet  Google Scholar 

  50. Yang, X.: Error analysis of stabilized semi-implicit method of Allen-Cahn equation. Discrete Contin. Dyn. Syst. Ser. B 11, 1057–1070 (2009)

    MathSciNet  Google Scholar 

  51. Zhu, L., Ju, L., Zhao, W.: Fast high-order compact exponential time differencing Runge-Kutta methods for second-order semilinear parabolic equations. J. Sci. Comput. 67, 1043–1065 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the anonymous reviewers for their valuable suggestions, which helped improve this manuscript.

Funding

This work was partially supported by the National Natural Science Foundation of China (No.12001539), China Postdoctoral Science Foundation (No. 2019TQ0073), and the Postgraduate Scientific Research Innovation Project of Hunan Province (No. CX20210012).

Author information

Authors and Affiliations

Authors

Contributions

Yabing Sun: Conceptualization, Methodology, Supervision, Writing. Quan Zhou: Methodology, Software.

Corresponding author

Correspondence to Quan Zhou.

Ethics declarations

Ethical Approval

Not Applicable.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the National Natural Science Foundation of China (No. 12001539), China Postdoctoral Science Foundation (No. 2019TQ0073), and the Postgraduate Scientific Research Innovation Project of Hunan Province (No. CX20210012).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhou, Q. Maximum bound principle for matrix-valued Allen-Cahn equation and integrating factor Runge-Kutta method. Numer Algor 97, 391–429 (2024). https://doi.org/10.1007/s11075-023-01708-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01708-5

Keywords

Mathematics Subject Classification (2010)