Skip to main content
Log in

A numerical technique based on multiplicative integration strategy for fractional Darboux problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, a numerical strategy is introduced for solving a class of linear fractional-order Darboux problem that includes the Caputo derivative. The presented strategy is grounded on the Newton-Cotes quadrature rule and is established by implementing Lagrange interpolation polynomial. A formula is developed to evaluate the two-dimensional fractional integrals by using the multiplicative integration strategy. Then, this formula is employed to derive a scheme for solving a class of fractional-order Darboux problem. The accuracy and efficiency of all the presented schemes are illustrated through numerical experiments. Furthermore, the estimation of the upper bounds of error in the numerical approximation for the proposed multiplicative integration strategy is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

Code availability

The computational codes are available from the corresponding author on request.

References

  1. Debnath, L.: A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 35(4), 487–501 (2004). https://doi.org/10.1080/00207390410001686571

    Article  MathSciNet  Google Scholar 

  2. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: theory and applications. Gordon and Breach, Switzerland (1993)

    Google Scholar 

  3. Ionescu, C., Lopes, A., Copot, D., Machadoc, J.A.T., Bates, J.H.T.: The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simulat. 51, 141–159 (2017). https://doi.org/10.1016/j.cnsns.2017.04.001

    Article  MathSciNet  Google Scholar 

  4. Viviani, L., Paola, M.D., Carfagni, G.R.: A fractional viscoelastic model for laminated glass sandwich plates under blast actions. Int. J. Mech. Sci. 222 (2022). https://doi.org/10.1016/j.ijmecsci.2022.107204

  5. Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribution. Phys. A: Stat. Mech. Appl. 287, 468–481 (2000). https://doi.org/10.1016/S0378-4371(00)00386-1

    Article  Google Scholar 

  6. Hilfer, R.: Applications of fractional calculus in physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  7. Darboux, G.: Sur une proposition relative aux equations lineaires. Comptes. Rend. Acad. Sci. 94, 1456–1459 (1882)

    Google Scholar 

  8. Day, J.T.: A Gaussian quadrature method for the numerical solution of the characteristic initial value problem \(u_{xy}=f(x, y, u)\). Math. Comput. 17(84), 438–441 (1963). https://doi.org/10.2307/2004006

    Article  Google Scholar 

  9. Day, J.T.: A Runge-Kutta method for the numerical solution of the Goursat problem in hyperbolic partial differential equations. Comput. J. 9(1), 81–83 (1966). https://doi.org/10.1093/comjnl/9.1.81

    Article  MathSciNet  Google Scholar 

  10. Wazwaz, A.M.: The decomposition method for approximate solution of the Goursat problem. Appl. Math. Comput. 69, 299–311 (1995). https://doi.org/10.1016/0096-3003(94)00137-S

    Article  MathSciNet  Google Scholar 

  11. Evans, D.J., Sanugi, B.B.: Numerical solution of the Goursat problem by a nonlinear trapezoidal formula. Appl. Math. Lett. 1(3), 221–223 (1988). https://doi.org/10.1016/0893-9659(88)90080-8

    Article  MathSciNet  Google Scholar 

  12. Erfanian, M., Gachpazan, M., Kosari, S.: A new method for solving of Darboux problem with Haar Wavelet. SeMA J. 74, 475–487 (2017). https://doi.org/10.1007/s40324-016-0095-8

    Article  MathSciNet  Google Scholar 

  13. Kumar, K.H., Jiwari, R.: A note on numerical solution of classical Darboux problem. Math. Meth. Appl. Sci. 44, 12998–13007 (2021). https://doi.org/10.1002/mma.7602

    Article  MathSciNet  Google Scholar 

  14. Abbas, S., Benchohra, M.: Ulam-Hyers stability for the Darboux problem for partial fractional differential and integro-differential equations via Picard operators. Results. Math. 65, 67–79 (2014). https://doi.org/10.1007/s00025-013-0330-x

    Article  MathSciNet  Google Scholar 

  15. Makhlouf, A.B., Benjemaa, M., Boucenna, D., Hammami, M.A.: Darboux problem for proportional partial fractional differential equations. Chaos Solit. Fractals 166 (2023). https://doi.org/10.1016/j.chaos.2022.112906

  16. Jain, M.K., Sharma, K.D.: Cubature method for the numerical solution of the characteristic initial value problem \(u_{xy}=f(x, y, u, u_{x}, u_{y})\). J. Austral. Math. Soc. 8, 355–368 (1968). https://doi.org/10.1017/S1446788700005425

    Article  MathSciNet  Google Scholar 

  17. Wazwaz, A.M.: On the numerical solution of the Goursat problem. Appl. Math. Comput. 59, 89–95 (1993). https://doi.org/10.1016/0096-3003(93)90036-E

    Article  MathSciNet  Google Scholar 

  18. Li, C., Qian, D., Chen, Y.: On Riemann-Liouville and Caputo derivatives. Discrete Dyn. Nat. Soc. 2011, 15 (2011). https://doi.org/10.1155/2011/562494

    Article  MathSciNet  Google Scholar 

  19. Chandhini, G., Prashanthi, K.S., Vijesh, V.A.: A radial basis function method for fractional Darboux problems. Eng. Anal. Bound. Elem. 86, 1–18 (2018). https://doi.org/10.1016/j.enganabound.2017.10.001

    Article  MathSciNet  Google Scholar 

  20. Diethelm, K.: The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer, Germany (2004)

    Google Scholar 

  21. Burden, R.L., Faires, J.D.: Numerical analysis. Cengage Learning, Australia (2010)

    Google Scholar 

  22. Brunner, H., Kauthen, J.P.: The numerical solution of two-dimensional Volterra integral equations by collocation and iterated collocation. IMA J. Numer. Anal. 9, 47–59 (1989). https://doi.org/10.1093/imanum/9.1.47

    Article  MathSciNet  Google Scholar 

  23. Maleknejad, K., Dehkordi, M.S.: Numerical solutions of two-dimensional nonlinear integral equations via Laguerre wavelet method with convergence analysis. Appl. Math. J. Chin. Univ. 36(1), 83–98 (2021). https://doi.org/10.1007/s11766-021-3656-2

    Article  MathSciNet  Google Scholar 

  24. Nemati, S., Lima, P.M., Ordokhani, Y.: Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials. J. Comput. Appl. Math. 242, 53–69 (2013). https://doi.org/10.1016/j.cam.2012.10.021

    Article  MathSciNet  Google Scholar 

  25. Mckee, S., Tang, T., Diogo, T.: An Euler-type method for two-dimensional Volterra integral equations of the first kind. IMA J. Numer. Anal. 20, 423–440 (2000). https://doi.org/10.1093/IMANUM/20.3.423

    Article  MathSciNet  Google Scholar 

  26. Mirzaee, F., Rafei, Z.: The block by block method for the numerical solution of the nonlinear two-dimensional Volterra integral equations. J. King. Saud. Univ. Sci. 23, 191–195 (2011). https://doi.org/10.1016/j.jksus.2010.07.008

    Article  Google Scholar 

  27. Han, G.Q., Hayami, K., Sugihara, K., Wang, J.: Extrapolation method of iterated collocation solution for two-dimensional non-linear Volterra integral equation. Appl. Math. Comput. 112, 49–61 (2000). https://doi.org/10.1016/S0096-3003(99)00036-3

    Article  MathSciNet  Google Scholar 

  28. Hosseini, S.A., Shahmorad, S., Talati, F.: A matrix based method for two dimensional nonlinear Volterra-Fredholm integral equations. Numer. Algor. 68, 511–529 (2015). https://doi.org/10.1007/s11075-014-9858-4

    Article  MathSciNet  Google Scholar 

  29. Maleknejad, Saeedipoor, E.: Hybrid function method and convergence analysis for two-dimensional nonlinear integral equations. J. Comput. Appl. Math. 322, 96-108 (2017). https://doi.org/10.1016/j.cam.2017.03.012

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Amna Bibi.

Ethics declarations

Ethical approval

Not applicable

Consent for publication

All authors give their consent for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibi, A., ur Rehman, M. A numerical technique based on multiplicative integration strategy for fractional Darboux problem. Numer Algor 97, 617–643 (2024). https://doi.org/10.1007/s11075-023-01718-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01718-3

Keywords