Skip to main content
Log in

An efficient fractional step numerical algorithm for time-delayed singularly perturbed 2D convection-diffusion–reaction problem with two small parameters

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The manuscript contemplates a computationally robust numerical algorithm for the solution of a singularly perturbed 2D time-delayed parabolic convection-diffusion–reaction problem involving two small parameters. The operator-splitting algorithm on a uniform mesh is used in the time direction. To handle the abrupt change in the solution due to the presence of perturbation parameters, the upwind scheme is used in the spatial direction on a layer-rectifying mesh, namely, the Shishkin mesh. This makes the accuracy in space to be one (with a logarithmic term). The use of Bakhvalov-Shishkin mesh in the spatial domain rectifies this logarithmic effect on the rate of convergence. The highly efficient Thomas algorithm is used for the computation. The devised method is claimed to be parameter uniform and globally first-order accurate. All the theoretical claims are corroborated in practice with valid numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wang, P.K.C.: Asymptotic stability of a time-delayed diffusion system. J. Appl. Mech. 30(4), 500–504 (1963)

    Article  MathSciNet  Google Scholar 

  2. Britton, N.: Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model. SIAM J. Appl Math. 50(6), 1663–1688 (1990)

    Article  MathSciNet  Google Scholar 

  3. Govindarao, L., Mohapatra, J.: A second order numerical method for singularly perturbed delay parabolic partial differential equation. Eng. Comput. 36(2), 420–444 (2019)

    Article  Google Scholar 

  4. Priyadarshana, S., Mohapatra, J.: Weighted variable based numerical scheme for time-lagged semilinear parabolic problems including small parameter. J. Appl. Math. Comput. (2023). https://doi.org/10.1007/s12190-023-01841-3

    Article  MathSciNet  Google Scholar 

  5. Das, A., Natesan, S.: Parameter-uniform numerical method for singularly perturbed 2D delay parabolic convection diffusion problems on Shishkin mesh. J. Appl. Math. Comput. 59(1), 207–225 (2019)

    Article  MathSciNet  Google Scholar 

  6. Das, A., Natesan, S.: Fractional step method for singularly perturbed 2D delay parabolic convection diffusion problems on Shishkin mesh. Int. J. Comput. Math. 4(2), 1–23 (2018)

    MathSciNet  Google Scholar 

  7. Govindarao, L., Das, A.: A second-order fractional step method for two-dimensional delay parabolic partial differential equations with a small parameter. Palaestine Journal of Mathematics. 11(3), 96–111 (2022)

    MathSciNet  Google Scholar 

  8. Priyadarshana, S., Mohapatra, J., Pattanaik, S.R.: A second order fractional step hybrid numerical algorithm for time delayed singularly perturbed 2D convection-diffusion problems. Appl. Numer. Math. 189, 107–129 (2023). https://doi.org/10.1016/j.apnum.2023.04.002

    Article  MathSciNet  Google Scholar 

  9. Govindarao, L., Sahu, S.R., Mohapatra, J.: Uniformly convergent numerical method for singularly perturbed time delay parabolic problem with two small parameters. Iran. J. Sci. Technol. Trans. A. Sci. 43(5), 2373–2383 (2019)

    Article  MathSciNet  Google Scholar 

  10. Priyadarshana, S., Mohapatra, J., Pattanaik, S.R.: Parameter uniform optimal order numerical approximations for time-delayed parabolic convection diffusion problems involving two small parameters. Comput. Appl. Math. 41(233), (2022). https://doi.org/10.1007/s40314-022-01928-w

  11. Kumar, S., Kumar, M.: A robust numerical method for a two-parameter singularly perturbed time delay parabolic problem. Comput. Appl. Math. 39(3), 1–25 (2020). https://doi.org/10.1007/s40009-015-0350-z

    Article  MathSciNet  Google Scholar 

  12. O’Riordan, E., Pickett, M.L.: A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem. Adv. Comput. Math. 35, 57–82 (2011). https://doi.org/10.1007/s10444-010-9164-1

    Article  MathSciNet  Google Scholar 

  13. Clavero, C., Jorge, J., Lisbona, F., Shishkin, G.: An alternating direction scheme on a nonuniform mesh for reaction-diffusion parabolic problems. IMA J. Numer. Anal. 20(2), 263–280 (2000). https://doi.org/10.1093/imanum/20.2.263

    Article  MathSciNet  Google Scholar 

  14. O’Riordan, E., Pickett, M.L., Shsihkin, G.I.: Numerical methods for singularly perturbed elliptic problems containing two perturbation parameters. Math. Model. Anal. 11(2), 199–212 (2006). https://doi.org/10.1080/13926292.2006.9637313

    Article  MathSciNet  Google Scholar 

  15. Lin\(\beta \), T, Roos, H.G.: Analysis of a finite-difference scheme for a singularly perturbed problem with two small parameters. J. Math. Anal. 289(2), 355–366 (2004)

  16. Barman, M., Natesan, S., Sendur, A.: Alternating direction implicit method for singularly perturbed 2D parabolic convection-diffusion-reaction problem with two small parameters. Int. J. Comput. Math. (2022). https://doi.org/10.1080/00207160.2022.2114077

    Article  Google Scholar 

  17. O’Riordan, E., Shishkin, G.I.: A technique to prove parameter-uniform convergence for a singularly perturbed convection-diffusion equation. J. Comput. Appl. Math. 206(1), 136–145 (2007). https://doi.org/10.1016/j.cam.2006.06.002

    Article  MathSciNet  Google Scholar 

  18. Friedman, A.: Partial differential equations of parabolic type. Prentice-Hall, Englewood Cliffs, NJ (1964)

    Google Scholar 

  19. Ladyzhenskaia, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasilinear equations of parabolic type, American Mathematical Soc. RI. 23, (1968)

  20. Shishkin, G.I.: Grid approximations of singularly perturbed elliptic and parabolic equations. Ural Branch of Russian Academy of Sciences, Ekaterinburg (1992). ((in Russian))

    Google Scholar 

  21. Miller, J.J.H., Shishkin, G.I., Koren, B., Shishkina, L.P.: Grid approximation of a singularly perturbed boundary value problem modelling heat transfer in the case of flow over a flat plate with suction of the boundary layer. J. Comput. Appl. Math. 166(1), 221–232 (2004). https://doi.org/10.1016/j.cam.2003.09.026

    Article  MathSciNet  Google Scholar 

  22. Clavero, C., Jorge, J., Lisbona, F., Shishkin, G.: A fractional step method on a special mesh for the resolution of multi-dimensional evolutionary convection-diffusion problems. Appl. Numer. Math. 27(3), 211–231 (1998)

    Article  MathSciNet  Google Scholar 

  23. Thomas, L.H.: Elliptic problems in linear difference equations over a network. Watson Sc. Comp. Lab. Rep. Columbia University, New York (1949)

    Google Scholar 

  24. Roos, H., Lin\(\beta \), T.: Sufficient conditions for uniform convergence on layer-adapted grids. Computing. 34(6), 27–45 (1999). https://doi.org/10.1007/s006070050049

  25. Clavero, C., Shiromani, S., Shanthi, V.: A numerical approach for a two-parameter singularly perturbed weakly-coupled system of 2-D elliptic convection-reaction-diffusion PDEs. J. Comput. Appl. Math. 436(7), (2024). https://doi.org/10.1016/j.cam.2023.115422

  26. Clavero, C., Jorge, J.C., Lisbona, F., Shishkin, G.I.: Splitting time methods and one dimensional special meshes for reaction-diffusion parabolic problems. In: Lecture Notes in Computer Science. Springer, Berlin, Heidelberg. 1196, (1997). https://doi.org/10.1007/3-540-62598-4_84

Download references

Acknowledgements

The first author Ms. S. Priyadarshana conveys her profound gratitude to the DST, Govt. of India, for providing INSPIRE fellowship (IF 180938).

Funding

The first author would like to thank the Department of Science and Technology (DST), Govt. of India, for providing financial support to carry out her research work at NIT Rourkela.

Author information

Authors and Affiliations

Authors

Contributions

SP has done the analysis and computation and written the manuscript. JM has formulated the problem and done the formal analysis.

Corresponding author

Correspondence to J. Mohapatra.

Ethics declarations

Ethical approval

NA

Informed consent

On behalf of the authors, Dr. Jugal Mohapatra shall be communicating the manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshana, S., Mohapatra, J. An efficient fractional step numerical algorithm for time-delayed singularly perturbed 2D convection-diffusion–reaction problem with two small parameters. Numer Algor 97, 687–726 (2024). https://doi.org/10.1007/s11075-023-01720-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01720-9

Keywords

Mathematics Subject Classification (2010)