Skip to main content
Log in

A weak Galerkin pseudostress-based mixed finite element method on polygonal meshes: application to the Brinkman problem appearing in porous media

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we extend the utilization of pseudostress-based formulation, recently employed for solving diverse linear and nonlinear problems in continuum mechanics via mixed finite element methods, to the weak Galerkin method (WG) framework and its respective applications. More precisely, we propose and analyze a mixed weak Galerkin method for a pseudostress formulation of the two-dimensional Brinkman equations with Dirichlet boundary conditions, then compute the velocity and pressure via postprocessing formulae. We begin by recalling the corresponding continuous variational formulation and a summary of the main WG method, including the weak divergence operator and the discrete space, which are needed for our approach. In particular, in order to define the weak discrete bilinear form, whose continuous version involves the classical divergence operator, we propose the weak divergence operator as a well-known alternative for the classical divergence operator in a suitable discrete subspace. Next, we show that the discrete bilinear form satisfies the hypotheses required by the Lax–Milgram lemma. In this way, we prove the well-posedness of the weak Galerkin scheme and derive a priori error estimates for the numerical pseudostress, velocity, and pressure. Finally, several numerical results confirming the theoretical rates of convergence and illustrating the good performance of the method are presented. The results in this work are fundamental and can be extended into more relevant models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Ligaarden, I.S., Krotkiewski, M., Lie, K.A., Pal, M., Schmid, D.W.: On the Stokes-Brinkman equations for modeling flow in carbonate reservoirs. In: Proceedings of the ECMOR XII-12th European Conference on the Mathematics of Oil Recovery, 6–9 September 2010, Oxford, UK

  2. Vafai, K.: Porous media: applications in biological systems and biotechnology. CRC Press, USA (2011)

    Google Scholar 

  3. Wehrspohn, R.B.: Ordered porous nanostructures and applications. Springer Science + Business Media, New York (2005)

    Book  Google Scholar 

  4. Iliev, O., Lazarov, R., Willems, J.: Variational multiscale finite element method for flows in highly porous media. Multiscale Modeling & Simulation 9, 1350–1372 (2011)

    Article  MathSciNet  Google Scholar 

  5. Popov, P., Qin, G., Bi, L., Efendiev, Y., Ewing, R., Kang, Z., Li, J.: Multiscale methods for modeling fluid flow through naturally fractured carbonate karst reservoirs. In: Proceedings of the SPE Annual Technical Conference and Exhibition (2007)

  6. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid in a dense swarm of particles. Appl. Sci. Res. A 1, 27–34 (1949)

    Article  Google Scholar 

  7. Mardal, K.A., Tai, X.C., Winther, R.: A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40, 1605–1631 (2002)

    Article  MathSciNet  Google Scholar 

  8. Burman, E., Hansbo, P.: Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem. Numer. Methods Partial Differential Equations 21, 986–997 (2005)

    Article  MathSciNet  Google Scholar 

  9. Burman, E., Hansbo, P.: A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math. 198, 35–51 (2007)

    Article  MathSciNet  Google Scholar 

  10. Correa, M.R., Loula, A.F.D.: A unified mixed formulation naturally coupling Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 198, 2710–2722 (2009)

    Article  Google Scholar 

  11. Xie, X., Xu, J., Xue, G.: Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models. J. Comput. Math. 26, 437–455 (2008)

    MathSciNet  Google Scholar 

  12. Barrios, T.P., Bustinza, R., García, G.C., Hernández, E.: On stabilized mixed methods for generalized Stokes problem based on the velocity-pseudostress formulation: a priori error estimates. Comput. Methods Appl. Mech. Engrg. 237(240), 78–87 (2012)

    Article  MathSciNet  Google Scholar 

  13. Gatica, G.N., Gatica, L.F., Márquez, A.: Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numer. Math. 126(4), 635–677 (2014)

    Article  MathSciNet  Google Scholar 

  14. Anaya, V., Gatica, G.N., Mora, D., Ruiz-Baier, R.: An augmented velocity-vorticity pressure formulation for the Brinkman equations. Internat. J. Numer. Methods Fluids 79, 109–137 (2015)

    Article  MathSciNet  Google Scholar 

  15. Anaya, V., Mora, D., Oyarzúa, R., Ruiz-Baier, R.: A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem. Numer. Math. 133(4), 781–817 (2016)

    Article  MathSciNet  Google Scholar 

  16. Gatica, G.N., Gatica, L.F., Sequeira, F.A.: Analysis of an augmented pseudostress-based mixed formulation for a nonlinear Brinkman model of porous media flow. Comput. Methods Appl. Mech. Engrg. 289, 104–130 (2015)

    Article  MathSciNet  Google Scholar 

  17. Mu, L., Wang, J., Ye, X.: A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods. J. Comput. Phys. 273, 327–342 (2014)

    Article  MathSciNet  Google Scholar 

  18. Zhai, Q., Zhang, R., Mu, L.: A new weak Galerkin finite element scheme for the Brinkman model. Commun. Comput. Phys. 19(5), 1409–1434 (2016)

    Article  MathSciNet  Google Scholar 

  19. Mu, L.: A uniformly robust \(H(\textbf{div})\) weak Galerkin finite element method for Brinkman problems. SIAM J. Numer. Anal. 58(3), 1422–1439 (2020)

    Article  MathSciNet  Google Scholar 

  20. Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for the Brinkman problem. Math. Models Methods Appl. Sci. 27(4), 707–743 (2017)

    Article  MathSciNet  Google Scholar 

  21. Gatica, G.N., Munar, M., Sequeira, F.A.: A mixed virtual element method for a nonlinear Brinkman model of porous media flow. Calcolo 55(2), 21 (2018)

    Article  MathSciNet  Google Scholar 

  22. Gatica, L.F., Sequeira, F.A.: A priori and a posteriori error analyses of an HDG method for the Brinkman problem. Comput. Math. Appl. 75(4), 1191–1212 (2018)

    Article  MathSciNet  Google Scholar 

  23. Qian, Y., Wu, S., Wang, F.: A mixed discontinuous Galerkin method with symmetric stress for Brinkman problem based on the velocity-pseudostress formulation. Comput. Methods Appl. Mech. Engrg. 126(4), 113177 (2020)

    Article  MathSciNet  Google Scholar 

  24. Meddahi, S., Ruiz-Baier, R.: A new DG method for a pure–stress formulation of the Brinkman problem with strong symmetry. arxiv:2204.03445 (2022)

  25. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991

  26. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. In: Springer Series in Computational Mathematics, vol. 44, Springer, Heidelberg (2013)

  27. Farhloul, M., Fortin, M.: A new mixed finite element for the Stokes and elasticity problems. SIAM J. Numer. Anal. 30(4), 971–990 (1993)

    Article  MathSciNet  Google Scholar 

  28. Behr, M.A., Franca, L.P., Tezduyar, T.E.: Stabilized finite element methods for the velocity-pressure-stress formulation of incompressible flows. Comput. Methods Appl. Mech. Engrg. 104(1), 31–48 (1993)

    Article  MathSciNet  Google Scholar 

  29. Cai, Z., Tong, C., Vassilevski, P.S., Wang, C.: Mixed finite element methods for incompressible flow: stationary Stokes equations. Numer. Methods Partial Differential Equations 26(4), 957–978 (2010)

    Article  MathSciNet  Google Scholar 

  30. Gatica, G.N., Márquez, A., Sánchez, M.A.: Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Engrg. 199(17–20), 1064–1079 (2010)

    Article  MathSciNet  Google Scholar 

  31. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MathSciNet  Google Scholar 

  32. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 83, 2101–2126 (2014)

    Article  MathSciNet  Google Scholar 

  33. Chen, G., Feng, M., Xie, X.: Robust globally divergence-free weak Galerkin methods for Stokes equations. J. Comput. Math. 34(5), 549–572 (2016)

    Article  MathSciNet  Google Scholar 

  34. Liu, X., Li, J., Chen, Z.: A weak Galerkin finite element method for the Navier Stokes equations. J. Comput. Appl. Math. 333, 442–457 (2019)

    Article  MathSciNet  Google Scholar 

  35. Dehghan, M., Gharibi, Z.: Numerical analysis of fully discrete energy stable weak Galerkin finite element scheme for a coupled Cahn-Hilliard-Navier-stokes phase-field model. Appl. Math. Comput. 410, 126487 (2021)

    MathSciNet  Google Scholar 

  36. Gharibi, Z., Dehghan, M., Abbaszadeh, M.: Numerical analysis of locally conservative weak Galerkin dual-mixed finite element method for the time-dependent Poisson-Nernst-Planck system. Comput. Math. Appl. 92, 88–108 (2021)

    Article  MathSciNet  Google Scholar 

  37. Dehghan, M., Gharibi, Z.: An analysis of weak Galerkin finite element method for a steady state Boussinesq problem. J. Comput. Appl. Math. 406, 114029 (2022)

    Article  MathSciNet  Google Scholar 

  38. Girault, V., Raviart, P.: Finite element methods for Navier–Stokes equations. Theory and Algorithms, Springer Series in Computational Mathematics, vol. 5. Berlin: Springer (1986)

  39. Iliev, O.P., Lazarov, R.D., Willems, J.: Variational multiscale finite element method for flows in highly porous media. Multiscale Model. Simul. 9(4), 1350–1372 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for carefully reading this paper and for their comments and suggestions, which have improved the paper.

Funding

This work was partially supported by ANID-Chile through the project Anillo of Computational Mathematics for Desalination Processes (ACT210087).

Author information

Authors and Affiliations

Authors

Contributions

The author wrote the main manuscript text and prepared the numerical results including tables and figures.

Corresponding author

Correspondence to Zeinab Gharibi.

Ethics declarations

Ethical approval

Ethical approval is not applicable to this article.

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharibi, Z. A weak Galerkin pseudostress-based mixed finite element method on polygonal meshes: application to the Brinkman problem appearing in porous media. Numer Algor 97, 1341–1366 (2024). https://doi.org/10.1007/s11075-024-01752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-024-01752-9

Keywords

Mathematics Subject Classification (2010)