Skip to main content
Log in

Spherical interpolation of scattered data using least squares thin-plate spline and inverse multiquadric functions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We construct some smooth functions defined over a sphere that interpolate large sets of scattered data, using some modified Shepard methods, the least squares thin-plate spline and the inverse multiquadric functions. We illustrate the benefits of our methods in numerical examples for some test functions and some real data applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Allasia, G., Cavoretto, R., De Rossi, A.: Hermite-Birkhoff interpolation on scattered data on the sphere and other manifolds. Appl. Math. Comput. 318, 35–50 (2018)

    MathSciNet  Google Scholar 

  2. Baxter, B.J.C., Hubbert, S.: Radial basis functions for the sphere. In: Recent Progress in Multivariate Approximation, Witten-Bommerholz, 2000. Internat. Ser. Numer. Math., vol. 137, pp. 33-47. Birkhäuser, Basel (2001)

  3. Cătinaş, T.: The combined Shepard-Abel-Goncharov univariate operator. Rev. Anal. Numér. Théor. Approx. 32, 11–20 (2003)

    Article  Google Scholar 

  4. Cătinaş, T.: The combined Shepard-Lidstone bivariate operator. In: Trends and Applications in Constructive Approximation. International Series of Numerical Mathematics (de Bruin, M.G. et al. (eds.)), 151, pp. 77–89, Springer Group-Birkhäuser Verlag (2005)

  5. Cătinaş, T.: Bivariate interpolation by combined Shepard operators. In: Proceedings of \(17^{th}\) IMACS World Congress, Scientific Computation, Applied Mathematics and Simulation (Borne, P., Benrejeb, M., Dangoumau, N., Lorimier, L. (eds.)), 7 pp., Paris, July 11–15 (2005)

  6. Cătinaş, T.: The bivariate Shepard operator of Bernoulli type. Calcolo 44(4), 189–202 (2007)

    Article  MathSciNet  Google Scholar 

  7. De Rossi, A.: Spherical interpolation of large scattered data sets using zonal basis functions. In: Mathematical Methods for Curves and Surfaces (Daehlen, M., Morken, K., Schumaker, L. (eds.)), pp. 125–134, TrØmso 2004. Nashboro Press (2005)

  8. De Rossi, A.: Hybrid spherical approximation. arXiv:1404.1475 (2014)

  9. Cavoretto, R., De Rossi, A.: Fast and accurate interpolation of large scattered data sets on the sphere. J. Comput. Appl. Math. 234, 1505–1521 (2010)

    Article  MathSciNet  Google Scholar 

  10. Cavoretto, R., De Rossi, A.: Numerical comparison of different weights in Shepard’s interpolants on the sphere. Appl. Math. Sci. 4, 3425–3435 (2010)

    MathSciNet  Google Scholar 

  11. Cavoretto, R., De Rossi, A.: Spherical interpolation using the partition of unity method: an efficient and flexible algorithm. Appl. Math. Lett. 25, 1251–1256 (2012)

    Article  MathSciNet  Google Scholar 

  12. Cavoretto, R., De Rossi, A.: Achieving accuracy and efficiency in spherical modelling of real data. Math. Methods Appl. Sci. 37, 1449–1459 (2014)

    Article  MathSciNet  Google Scholar 

  13. Farwig, R.: Rate of convergence of Shepard’s global interpolation formula. Math. Comp. 46, 577–590 (1986)

    MathSciNet  Google Scholar 

  14. Fasshauer, G.E., Zhang, J.G.: On choosing “optimal’’ shape parameters for RBF approximation. Numer. Algor. 45, 345–368 (2007)

    Article  MathSciNet  Google Scholar 

  15. Franke, R.: Scattered data interpolation: tests of some methods. Math. Comp. 38, 181–200 (1982)

    MathSciNet  Google Scholar 

  16. Franke, R., Nielson, G.: Smooth interpolation of large sets of scattered data. Int. J. Numer. Meths. Engrg. 15, 1691–1704 (1980)

    Article  MathSciNet  Google Scholar 

  17. Le Gia, Q.T., Sloan, I.H., Wendland, H.: Multiscale analysis in Sobolev spaces on the sphere. SIAM J. Numer. Anal. 48(6), 2065–2090 (2010)

    Article  MathSciNet  Google Scholar 

  18. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76, 1905–1915 (1971)

    Article  Google Scholar 

  19. Hubbert, S., Le Gia, Q.T., Morton, T.: Spherical radial basis functions. Springer, Theory and Applications (2015)

    Book  Google Scholar 

  20. Lazzaro, D., Montefusco, L.B.: Radial basis functions for multivariate interpolation of large scattered data sets. J. Comput. Appl. Math. 140, 521–536 (2002)

    Article  MathSciNet  Google Scholar 

  21. Renka, R.J., Cline, A.K.: A triangle-based \(C^{1}\) interpolation method. Rocky Mountain J. Math. 14, 223–237 (1984)

    Article  MathSciNet  Google Scholar 

  22. Renka, R.J.: Multivariate interpolation of large sets of scattered data. ACM Trans. Math. Software 14, 139–148 (1988)

    Article  MathSciNet  Google Scholar 

  23. Saff, E.B., Kuijlaars, A.B.J.: Distributing many points on a sphere. Math. Intelligencer. 19, 5–11 (1997)

    Article  MathSciNet  Google Scholar 

  24. Shepard, D.: A two dimensional interpolation function for irregularly spaced data. In: Proceedings of the 1968 23rd ACM National Conference, pp. 517–523. ACM (1968)

  25. Sloan, I.H., Sommariva, A.: Approximation on the sphere using radial basis functions plus polynomials. Adv. Comput. Math. 29, 147–177 (2008)

    Article  MathSciNet  Google Scholar 

  26. Wong, T.T., Luk, W.S., Heng, P.A.: Sampling with Hammersley and Halton Points. J. Graph. Tools 2(2), 9–24 (1997)

    Article  Google Scholar 

  27. Zuppa, C.: Error estimates for moving least square approximations. Bull. Braz. Math. Soc. (N.S) 34(2), 231–249 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the referees for the careful reading and for their valuable suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have equal contributions to the manuscript.

Corresponding author

Correspondence to Teodora Cătinaş.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cătinaş, T., Malina, A. Spherical interpolation of scattered data using least squares thin-plate spline and inverse multiquadric functions. Numer Algor 97, 1397–1414 (2024). https://doi.org/10.1007/s11075-024-01755-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-024-01755-6

Keywords

Mathematics Subject Classification (2010)