Skip to main content

Advertisement

Log in

High-order \(L^{2}\)-bound-preserving Fourier pseudo-spectral schemes for the Allen-Cahn equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we present a class of high-order, large time-stepping, and delay-free stabilization schemes for the Allen-Cahn equation. First, we apply a Fourier pseudo-spectral method for spatial discretization, and then, we establish the \(l^{2}\)-bound of the semi-discrete system. Furthermore, by adopting a time-step-dependent stabilization technique and taking advantage of recursive approximation of the exponential functions, we propose a class of stabilization Runge-Kutta schemes that preserve \(l^2\)-bound for any time-step size. Finally, we eliminate the delayed convergence brought by stabilization via a relaxation technique. Consequently, the resulting up-to-fourth-order parametric relaxation integrating factor Runge-Kutta (pRIFRK) schemes preserve the \(l^{2}\)-boundedness unconditionally with suitably chosen stabilization parameters. We also prove that the first-order pRIFRK scheme is unconditionally dissipative, w.r.t. a modified energy function, and the temporal convergence in the \(l^{2}\)-norm is estimated with pth-order accuracy. Numerical experiments are carried out to demonstrate the high-order accuracy, structure-preserving properties, and performance of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in the manuscript.

Code availability

Custom code.

References

  1. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  2. Douglas Jr, J., Dupont, T.: Alternating-direction Galerkin methods on rectangles. In: Numerical Solution of Partial Differential Equations–II, pp. 133–214. Elsevier (1971)

  3. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation. SIAM J. Numer. Anal. 57(2), 875–898 (2019)

    Article  MathSciNet  Google Scholar 

  4. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Rev. 63(2), 317–359 (2021)

    Article  MathSciNet  Google Scholar 

  5. Elliott, C.M., Stuart, A.: The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 30(6), 1622–1663 (1993)

    Article  MathSciNet  Google Scholar 

  6. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems. Unpublished Article 6 (1998)

  7. Feng, X., Tang, T., Yang, J.: Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models. East Asian J. Applied Math. 3(1), 59–80 (2013)

    Article  MathSciNet  Google Scholar 

  8. Feng, X., Tang, T., Yang, J.: Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods. SIAM J. Sci. Comput. 37(1), A271–A294 (2015)

    Article  MathSciNet  Google Scholar 

  9. Fu, Z., Yang, J.: Energy-decreasing exponential time differencing Runge-Kutta methods for phase-field models. J. Comput. Phys. 454, 110943 (2022)

    Article  MathSciNet  Google Scholar 

  10. Gottlieb, S., Ketcheson, D.I., Shu, C.W.: Strong stability preserving Runge-Kutta and multistep time discretizations. World Sci. (2011)

  11. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral methods for time-dependent problems, vol. 21. Cambridge University Press (2007)

  12. Huang, J., Shu, C.W.: Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms. J. Comput. Phys. 361, 111–135 (2018)

    Article  MathSciNet  Google Scholar 

  13. Isherwood, L., Grant, Z.J., Gottlieb, S.: Strong stability preserving integrating factor Runge-Kutta methods. SIAM J. Numer. Anal. 56(6), 3276–3307 (2018)

    Article  MathSciNet  Google Scholar 

  14. Jeong, D., Kim, J.: Conservative Allen-Cahn-Navier-Stokes system for incompressible two-phase fluid flows. Comput. Fluids 156, 239–246 (2017)

    Article  MathSciNet  Google Scholar 

  15. Jiang, K., Ju, L., Li, J., Li, X.: Unconditionally stable exponential time differencing schemes for the mass-conserving Allen-Cahn equation with nonlocal and local effects. Numer. Methods Partial Differ. Equ. 38(6), 1636–1657 (2022)

    Article  MathSciNet  Google Scholar 

  16. Ju, L., Li, X., Qiao, Z.: Generalized SAV-exponential integrator schemes for Allen-Cahn type gradient flows. SIAM J. Numer. Anal. 60(4), 1905–1931 (2022)

    Article  MathSciNet  Google Scholar 

  17. Ju, L., Li, X., Qiao, Z., Zhang, H.: Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87(312), 1859–1885 (2018)

    Article  MathSciNet  Google Scholar 

  18. Kraaijevanger, J.F.B.M.: Contractivity of Runge-Kutta methods. BIT Numer. Math. 31(3), 482–528 (1991)

    Article  MathSciNet  Google Scholar 

  19. Lawson, J.D.: Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4(3), 372–380 (1967)

    Article  MathSciNet  Google Scholar 

  20. Li, D., Quan, C., Xu, J.: Stability and convergence of Strang splitting. Part I: scalar Allen-Cahn equation. J. Comput. Phys. 458, 111087 (2022)

    Article  MathSciNet  Google Scholar 

  21. Li, J., Ju, L., Cai, Y., Feng, X.: Unconditionally maximum bound principle preserving linear schemes for the conservative Allen-Cahn equation with nonlocal constraint. J. Sci. Comput. 87, 1–32 (2021)

    Article  MathSciNet  Google Scholar 

  22. Li, J., Li, X., Ju, L., Feng, X.: Stabilized integrating factor Runge-Kutta method and unconditional preservation of maximum bound principle. SIAM J. Sci. Comput. 43(3), A1780–A1802 (2021)

    Article  MathSciNet  Google Scholar 

  23. Li, Y., Kim, J.: An unconditionally stable hybrid method for image segmentation. Appl. Numer. Math. 82, 32–43 (2014)

    Article  MathSciNet  Google Scholar 

  24. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D: Nonlinear Phenom. 179(3–4), 211–228 (2003)

    Article  MathSciNet  Google Scholar 

  25. Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. J. Sci. Comput. 17, 211–220 (2002)

    Article  MathSciNet  Google Scholar 

  26. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    Article  MathSciNet  Google Scholar 

  27. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst 28(4), 1669–1691 (2010)

    Article  MathSciNet  Google Scholar 

  28. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MathSciNet  Google Scholar 

  29. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math. 451–461 (2016)

  30. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  Google Scholar 

  31. Xu, J., Li, Y., Wu, S., Bousquet, A.: On the stability and accuracy of partially and fully implicit schemes for phase field modeling. Comput. Methods Appl. Mech. Eng. 345, 826–853 (2019)

    Article  MathSciNet  Google Scholar 

  32. Yang, J., Du, Q., Zhang, W.: Uniform \(l^{p}\)-bound of the Allen-Cahn equation and its numerical discretization. Int. J. Numer. Anal. Model. 15 (2018)

  33. Zhang, H., Zhang, G., Liu, Z., Qian, X., Song S.: On the maximum principle and high-order, delay-free integrators for the viscous Cahn-Hilliard equation (2022)

  34. Zhang, H., Qian, X., Xia, J., Song, S.: Efficient inequality-preserving integrators for differential equations satisfying forward Euler conditions. ESAIM: Math. Model. Numer. Anal. 57(3), 1619–1655 (2023)

    Article  MathSciNet  Google Scholar 

  35. Zhang, H., Yan, J., Qian, X., Chen, X., Song, S.: Explicit third-order unconditionally structure-preserving schemes for conservative Allen-Cahn equations. J. Sci. Comput. 90, 1–29 (2022)

    Article  MathSciNet  Google Scholar 

  36. Zhang, H., Yan, J., Qian, X., Song, S.: Numerical analysis and applications of explicit high order maximum principle preserving integrating factor Runge-Kutta schemes for Allen-Cahn equation. Appl. Numer. Math. 161, 372–390 (2021)

    Article  MathSciNet  Google Scholar 

  37. Zhang, H., Yan, J., Qian, X., Song, S.: Up to fourth-order unconditionally structure-preserving parametric single-step methods for semilinear parabolic equations. Comput. Methods Appl. Mech. Eng. 393, 114817 (2022)

    Article  MathSciNet  Google Scholar 

  38. Zhu, L., Ju, L., Zhao, W.: Fast high-order compact exponential time differencing Runge-Kutta methods for second-order semilinear parabolic equations. J. Sci. Comput. 67, 1043–1065 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous referee for their constructive comments and suggestions that greatly improved the quality of this research.

Funding

This work was supported by the National Natural Science Foundation of China (12271523, 12071481, 11971481), Defense Science Foundation of China (2021-JCJQ-JJ-0538), National Key R &D Program of China (SQ2020YFA0709803), Science & Technology Innovation Program of Hunan Province (2021RC3082, 2022RC1192), Natural Science Foundation of Hunan (2021JJ20053) and Research fund from College of Science, National University of Defense Technology (2023-lxy-fhjj-002).

Author information

Authors and Affiliations

Authors

Contributions

X. Teng: conceptualization, formal analysis, software, writing — review and editing; H. Zhang: writing — review and editing.

Corresponding author

Correspondence to Hong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Some non-negative RK Butcher tableaux with non-decreasing abscissas and optimal SSP coefficients

(46)

RK\(^+\)(5, 4) [13], \(\mathcal {C} = 1.346586417284006\), \(c \approx [0, 0.4549, 0.5165, 0.5165, 0.9903]^T\):

$$\begin{aligned} \left\{ \begin{aligned} u_{n, 1}&= 0.387392167970373 u_{n, 0} + 0.612607832029627[ u_{n, 0} + \frac{\tau }{\mathcal {C}} f(t_{n, 0}, u_{n, 0})], \\ u_{n, 2}&= 0.568702484115635 u_{n, 0} + 0.431297515884365[ u_{n, 1} + \frac{\tau }{\mathcal {C}} f(t_{n, 1}, u_{n, 1})], \\ u_{n, 3}&= 0.589791736452092 u_{n, 0} + 0.410208263547908[u_{n, 2} + \frac{\tau }{\mathcal {C}} f(t_{n, 2}, u_{n, 2})], \\ u_{n, 4}&= 0.213474206786188 u_{n, 0} + 0.786525793213812[u_{n, 3} + \frac{\tau }{\mathcal {C}} f(t_{n, 3}, u_{n, 3})], \\ u^{n+1}&= 0.270147144537063 u_{n, 0} + 0.029337521506634[u_{n, 0} + \frac{\tau }{\mathcal {C}} f(t_{n, 0}, u_{n, 0})] \\&\quad + 0.239419175840559[u_{n, 1} + \frac{\tau }{\mathcal {C}} f(t_{n, 1}, u_{n, 1})]\\&\quad + 0.227000995504038[ u_{n, 3} + \frac{\tau }{\mathcal {C}} f(t_{n, 3}, u_{n, 3})] \\&\quad + 0.234095162611706[u_{n, 4} + \frac{\tau }{\mathcal {C}} f(t_{n, 4}, u_{n, 4})]. \end{aligned} \right. \end{aligned}$$
(47)

Appendix B. Butcher tableaux of ETDRK schemes

Some first- and second-order ETDRK schemes that preserve \(l^{2}\)-boundedness are presented in the following Butcher-like tableaux.

(48)

Among them, the abscissas of ETDEKII and ETDRKIV schemes are required to meet \(c_{1} \ge 1\), the abscissa of ETDRKIII scheme is required to meet \(c_{1} \ge \frac{1}{2}\), and \(\varphi _{k, i}\left( \tau L_{\kappa }\right) =\varphi _{k}\left( c_{i} \tau L_{\kappa }\right) \).

Appendix C. Error estimates with global Lipschitz assumption

We modify the potential function F(u) such that its second derivative is bounded. For a large enough constant \(\beta > 1\), we modify F(u) by

$$\begin{aligned} \tilde{F}(u)=\left\{ \begin{array}{ll} \frac{3 \beta ^{2}-1}{2} u^{2}-2 \beta ^{3} u+\frac{1}{4}\left( 3 \beta ^{4}+1\right) , &{} u>\beta , \\ \frac{1}{4}\left( u^{2}-1\right) ^{2}, &{} u \in \left[ -\beta , \beta \right] , \\ \frac{3 \beta ^{2}-1}{2} u^{2}+2 \beta ^{3} u+\frac{1}{4}\left( 3 \beta ^{4}+1\right) , &{} u<-\beta . \end{array}\right. \end{aligned}$$

Then we replace f(u) by,

$$\begin{aligned} \tilde{f}(u)=-\tilde{F}^{\prime }(u)=\left\{ \begin{array}{ll} -\left( 3 \beta ^{2}-1\right) u+2 \beta ^{3}, &{} u>\beta , \\ -\left( u^{2}-1\right) u, &{} u \in \left[ -\beta , \beta \right] , \\ -\left( 3 \beta ^{2}-1\right) u-2 \beta ^{3}, &{} u<-\beta . \end{array}\right. \end{aligned}$$

Thus, we have \(\max _{u \in \mathbb {R}}|\tilde{f}^{\prime }(u)| \le 3 \beta ^{2}-1\).

Lemma C.1

Given any fixed \(t \in (0, T]\), when \(\kappa >0\), there exists \( l_{\kappa }=3 \beta ^{2}-1+\kappa \), such that for all \( \varvec{u}, \varvec{v} \in \mathbb {R}^{N},\Vert \varvec{u}\Vert _{l^{2}} \le 1,\Vert \varvec{v}\Vert _{l^{2}} \le 1\), we have

$$\Vert N_{\kappa }(\varvec{u})-N_{\kappa }(\varvec{v})\Vert _{l^{2}} \le l_{\kappa } \Vert \varvec{u}-\varvec{v}\Vert _{l^{2}},$$

where \(l_{\kappa }\) is a constant independent of N.

Proof

It should be noted that \(\Vert f^{\prime }(\varvec{u})\Vert _{l^{\infty }} \le 3 \beta ^{2}-1 \). Applying Lagrange’s mean value theorem gives

$$ \Vert N_{\kappa }(\varvec{u})-N_{\kappa }(\varvec{v})\Vert _{l^{2}} \le \Vert f^{\prime }(\varvec{\xi })\Vert _{l^{\infty }}\Vert (\varvec{u}-\varvec{v})\Vert _{l^{2}}+\kappa \Vert \varvec{u}-\varvec{v}\Vert _{l^{2}} \le l_\kappa \Vert \varvec{u}-\varvec{v}\Vert _{l^{2}}, $$

where \(\varvec{\xi }=\theta \varvec{u}+(1-\theta ) \varvec{v}\), \(\theta \in (0,1)\), and \( l_{\kappa }=3 \beta ^{2}-1+\kappa \). \(\square \)

Theorem C.2

Assume \(\varvec{u}(t) \in C^{p+1}([0, T]; \mathbb {U}^{N})\) is the exact solution to the semi-discrete ODE system (3), \(\varvec{u}^{n}\) is a numerical solution computed by pRIFRK schemes with non-negative coefficients and non-decreasing parametric abscissas \(\hat{c}_{i}\) that meet pth-order conditions in Table 2, when \(\kappa \ge \max \{\frac{1}{\tilde{\tau }_{F E}}-\frac{\mathcal {C}}{\tau }, 0\}\), and \(\Vert \varvec{u}^{0}\Vert _{l^{2}} \le 1\), we have error estimates

$$\begin{aligned} \left\| \varvec{u}\left( \hat{t}_{n}\right) -\varvec{u}^{n}\right\| _{l^{2}} \le C(e^{l_{\kappa } s \frac{\hat{t}_{n}}{\hat{c}_{s}}}-1) \tau ^{p}, \hat{t}_{n} \le T, \end{aligned}$$

where \(\hat{t}_{n}=n \hat{\tau }\).

Proof

The Butcher form of the pRIFRK schemes is

$$\begin{aligned} \varvec{u}_{n, i}=\frac{1}{\psi _{i}(\tau \kappa )}\big (e^{\hat{c}_{i} \tau L} \varvec{u}^{n}+\tau \sum _{j=0}^{i-1} a_{i j} \psi _{j}(\tau \kappa ) e^{(\hat{c}_{i}-\hat{c}_{j}) \tau L} N_{\kappa }( \varvec{u}_{n, j})\big ), \quad i=1,2, \dots , s. \end{aligned}$$
(49)

We may as well set \(U_{n, i}\), \(0 \le i \le s\) as reference solutions for the pRIFRK schemes, and \(U_{n,0}=\varvec{u}(\hat{t}_{n})\), \(U_{n,s}=\varvec{u}(\hat{t}_{n+1})\). Then we have

$$\begin{aligned}&U_{n, i}=\frac{1}{\psi _{i}(\tau \kappa )}\big (e^{\hat{c}_{i} \tau L} \varvec{u}(\hat{t}_{n})+\tau \sum _{j=0}^{i-1} a_{i j} \psi _{j}(\tau \kappa ) e^{(\hat{c}_{i}-\hat{c}_{j}) \tau L} N_{\kappa }( U_{n, j})\big ), \nonumber \\&i=1,2, \dots , s-1.\end{aligned}$$
(50)
$$\begin{aligned}&U_{n, s}=\frac{1}{\psi _{s}(\tau \kappa )}\big (e^{\hat{c}_{s} \tau L} \varvec{u}(\hat{t}_{n})+\tau \sum _{j=0}^{s-1} a_{s j} \psi _{j}(\tau \kappa ) e^{(\hat{c}_{s}-\hat{c}_{j}) \tau L} N_{\kappa }( U_{n, j})\big )+R_{s}^{n} . \end{aligned}$$
(51)

According to Theorem 3.2, for an s-stage pth-order pRIFRK scheme, the truncation error of pRIFRK solution satisfies

$$\begin{aligned} \max _{0 \le n \le \left[ \frac{T}{\hat{\tau }}\right] -1}\left\| R_{s}^{n}\right\| _{l^{2}} \le C_{s} \tau ^{p+1}, \end{aligned}$$
(52)

where \(C_{s}\) depends on the \(C^{p+1}[0, T]\)-norm of \(\varvec{u}\), \(\Vert L\Vert _{\infty }\), N, s, and \(\kappa \), but is independent of \(\tau \). Assume \(e^{n}=\varvec{u}(\hat{t}_{n})-\varvec{u}^{n}\), \(e_{n, i}=U_{n, i}-\varvec{u}_{n, i}\), \(1 \le i \le s\). Then \(e_{n, 0}=e^{n}, e_{n, s}=e^{n+1}\). Let \(\varDelta _{n, j}=N_{\kappa }( U_{n, j})-N_{\kappa }(\varvec{u}_{n, j})\), subtract (49) from (50) and (51), and we can obtain

$$\begin{aligned}&e_{n, i}=\frac{1}{\psi _{i}(\tau \kappa )}\big (e^{\hat{c}_{i} \tau L} e^{n}+\tau \sum _{j=0}^{i-1} a_{i j} \psi _{j}(\tau \kappa ) e^{(\hat{c}_{i}-\hat{c}_{j}) \tau L} \varDelta _{n, j}\big ), \quad i=1,2, \dots , s-1.\end{aligned}$$
(53)
$$\begin{aligned}&e^{n+1}=\frac{1}{\psi _{s}(\tau \kappa )}\big (e^{\hat{c}_{s} \tau L} e^{n}+\tau \sum _{j=0}^{s-1} a_{s j} \psi _{j}(\tau \kappa ) e^{(\hat{c}_{s}-\hat{c}_{j}) \tau L} \varDelta _{n, j}\big )+R_{s}^{n}. \end{aligned}$$
(54)

According to Lemmas 2.3, C.1, using the triangle inequality, we can obtain

$$\begin{aligned} \begin{aligned} \Vert e_{n, i}\Vert _{l^{2}}&\le \frac{1}{\psi _{i}(\tau \kappa )}[\Vert e^{\hat{c}_{i} \tau L} e^{n}\Vert _{l^{2}}+\tau \sum _{j=0}^{i-1} a_{i j} \psi _{j}(\tau \kappa )\Vert e^{(\hat{c}_{i}-\hat{c}_{j}) \tau L} \varDelta _{n, j}\Vert _{l^{2}}] \\&\le \frac{1}{\psi _{i}(\tau \kappa )}[\Vert e^{n}\Vert _{l^{2}}+\tau \sum _{j=0}^{i-1} a_{i j} \psi _{j}(\tau \kappa )\Vert \varDelta _{n, j}\Vert _{l^{2}}] \\&\le [\Vert e^{n}\Vert _{l^{2}}+\tau l_{\kappa } \sum _{j=0}^{i-1}\Vert e_{n, j}\Vert _{l^{2}}] \\&\le (1+l_{\kappa } \tau )^{i}\Vert e^{n}\Vert _{l^{2}},\quad i=1, \dots , s-1. \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned} \Vert e_{n, s}\Vert _{l^{2}}&\le \frac{1}{\psi _{s}(\tau \kappa )}[\Vert e^{\hat{c}_{s} \tau L} e^{n}\Vert _{l^{2}}+\tau \sum _{j=0}^{s-1} a_{s j} \psi _{j}(\tau \kappa )\Vert e^{(\hat{c}_{s}-\hat{c}_{j}) \tau L} \varDelta _{n, j}\Vert _{l^{2}}]+\Vert R_{s}^{n}\Vert _{l^{2}} \\&\le \Vert e^{n}\Vert _{l^{2}}+\tau l_{\kappa } \sum _{j=0}^{s-1}\Vert e_{n, j}\Vert _{l^{2}}+\Vert R_{s}^{n}\Vert _{l^{2}} \\&\le (1+l_{\kappa } \tau )^{s}\Vert e^{n}\Vert _{l^{2}}+C_{s} \tau ^{p+1}. \end{aligned} \end{aligned}$$

Then we have

$$\begin{aligned} \begin{aligned} \Vert e^{n+1}\Vert _{l^{2}}&\le (1+l_{\kappa } \tau )^{s}\Vert e^{n}\Vert _{l^{2}}+C_{s} \tau ^{p+1} \\&\le (1+l_{\kappa } \tau )^{s(n+1)}\Vert e^{0}\Vert _{l^{2}}+C_{s} \tau ^{p+1} \sum _{i=0}^{n}(1+l_{\kappa } \tau )^{s i} \\&\le (1+l_{\kappa } \tau )^{s(n+1)}\Vert e^{0}\Vert _{l^{2}}+\frac{C_{s}}{l_{\kappa } s}(e^{l_{\kappa } s(n+1) \tau }-1) \tau ^{p}, \end{aligned} \end{aligned}$$

i.e.,

$$\begin{aligned} \Vert e^{n}\Vert _{l^{2}} \le (1+l_{\kappa } \tau )^{s n}\Vert e^{0}\Vert _{l^{2}}+\frac{C_{s}}{l_{\kappa } s}(e^{l_{\kappa } s n \tau }-1) \tau ^{p}. \end{aligned}$$

Assume \(\Vert e^{0}\Vert =0\), \(n \tau =\frac{\hat{t}_{n}}{\hat{c}_{s}}\), \(C=\frac{C_{s}}{l_{\kappa } s}\). Then we can obtain \(\Vert e^{n}\Vert _{l^{2}} \le C(e^{l_{\kappa } s \frac{\hat{t}_{n}}{\hat{c}_{s}}}-1) \tau ^{p}.\) \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, X., Zhang, H. High-order \(L^{2}\)-bound-preserving Fourier pseudo-spectral schemes for the Allen-Cahn equation. Numer Algor 97, 1859–1894 (2024). https://doi.org/10.1007/s11075-024-01772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-024-01772-5

Keywords

Mathematics Subject Classification (2010)