Skip to main content
Log in

An efficient breakdown-free algorithm for numerically evaluating the determinants of (pq)-pentadiagonal matrices

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

(p,q)-Pentadiagonal matrices have received considerable attention in recent years, which are a generalization of pentadiagonal matrices. In this paper, a breakdown-free algorithm is presented for numerically evaluating the determinants of n-by-n (p,q)-pentadiagonal matrices. The algorithm is based on the use of a reliable tridiagonalization process which preserves the banded structure and sparsity of the original matrix. Numerical examples are given in order to illustrate the effectiveness of the proposed algorithm. All of the experiments are performed on a computer with the aid of programs written in MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Marr, R.B., Vineyard, G.H.: Five-diagonal Toeplitz determinants and their relation to chebyshev polynomials. SIAM J. Matrix Anal. Appl. 9(4), 579–586 (1988)

    Article  MathSciNet  Google Scholar 

  2. Sogabe, T.: A fast numerical algorithm for the determinant of a pentadiagonal matrix. Appl. Math. Comput. 196(2), 835–841 (2008)

    MathSciNet  Google Scholar 

  3. Jia, J.T., Yang, B.T., Li, S.M.: On a homogeneous recurrence relation for the determinants of general pentadiagonal Toeplitz matrices. Comput. Math. Appl. 71(4), 1036–1044 (2016)

    Article  MathSciNet  Google Scholar 

  4. Losonczi, L.: Determinants of some pentadiagonal matrices. Glasnik Matematicki 56(2), 271–286 (2021)

    Article  MathSciNet  Google Scholar 

  5. Temperton, C.: Algorithms for the solution of cyclic tridiagonal systems. J. Comput. Phys. 19(3), 317–323 (1975)

    Article  MathSciNet  Google Scholar 

  6. Sogabe, T., El-Mikkawy, M.: Fast block diagonalization of \(k\)-tridiagonal matrices. Appl. Math. Comput. 218(6), 2740–2743 (2011)

    MathSciNet  Google Scholar 

  7. Sogabe, T., Yılmaz, F.: A note on a fast breakdown-free algorithm for computing the determinants and the permanents of \(k\)-tridiagonal matrices. Appl. Math. Comput. 249, 98–102 (2014)

    MathSciNet  Google Scholar 

  8. Ohashi, A., Sogabe, T., Usuda, T.: On decomposition of \(k\)-tridiagonal \({\ell }\)-Toeplitz matrices and its applications. Special Matrices 3(1), 200–206 (2015)

    Article  MathSciNet  Google Scholar 

  9. da Fonseca, C.M., Kowalenko, V., Losonczi, L.: Ninety years of \(k\)-tridiagonal matrices. Studia Scientiarum Mathematicarum Hungarica 57(3), 298–311 (2020)

    Article  MathSciNet  Google Scholar 

  10. Jia, J.T., Xie, R., Xu, X.Y., Ni, S., Wang, J.: A bidiagonalization-based numerical algorithm for computing the inverses of (\(p\),\(q\))-tridiagonal matrices. Numerical Algorithms 93(2), 899–917 (2023)

    Article  MathSciNet  Google Scholar 

  11. da Fonseca, C.M., Sogabe, T., Yımaz, F.: Lower \(k\)-Hessenberg matrices and \(k\)-Fibonacci, Fibonacci-\(p\) and Pell \((p, i)\) Numbers. General Math. Notes 31(1), 10–17 (2015)

    Google Scholar 

  12. McMillen, T.: On the eigenvalues of double band matrices. Linear Algebra Appl. 431(10), 1890–1897 (2009)

    Article  MathSciNet  Google Scholar 

  13. Jia, J.T.: A breakdown-free algorithm for computing the determinants of periodic tridiagonal matrices. Numerical Algorithms 83, 149–163 (2020)

    Article  MathSciNet  Google Scholar 

  14. Jia, J.T., Yan, Y.C., He, Q.: A block diagonalization based algorithm for the determinants of block \(k\)-tridiagonal matrices. J. Math. Chem. 59(3), 745–756 (2021)

    Article  MathSciNet  Google Scholar 

  15. Cinkir, Z.: A fast elementary algorithm for computing the determinant of Toeplitz matrices. J. Comput. Appl. Math. 255, 353–361 (2014)

    Article  MathSciNet  Google Scholar 

  16. Jia, J.T., Li, S.M.: On determinants of cyclic pentadiagonal matrices with Toeplitz structure. Comput. Math. Appl. 73, 304–309 (2017)

    Article  MathSciNet  Google Scholar 

  17. Jia, J.T., Li, S.M.: An efficient numerical algorithm for the determinant of a cyclic pentadiagonal Toeplitz matrix. Comput. Math. Appl. 74, 2992–2999 (2017)

    Article  MathSciNet  Google Scholar 

  18. Molinari, L.G.: Determinants of block tridiagonal matrices. Linear Algebra Appl. 429(8–9), 2221–2226 (2008)

    Article  MathSciNet  Google Scholar 

  19. Jia, J.T., Wang, J., He, Q., Yan, Y.C.: A division-free algorithm for numerically evaluating the determinant of a specific quasi-tridiagonal matrix. J. Math. Chem. 60, 1695–1706 (2022)

    Article  MathSciNet  Google Scholar 

  20. Filipiak, K., Markiewicz, A., Sawikowska, A.: Determinants of multidiagonal matrices. Electron. J. Linear Algebra 25, 102–118 (2012)

    Article  MathSciNet  Google Scholar 

  21. da Fonseca, C.M., Yılmaz, F.: Some comments on \(k\)-tridiagonal matrices: determinant, spectra, and inversion. Appl. Math. Comput. 270, 644–647 (2015)

    MathSciNet  Google Scholar 

  22. Nagata, M., Hada, M., Iwasaki, M., Nakamura, Y.: Eigenvalue clustering of coefficient matrices in the iterative stride reductions for linear systems. Comput. Math. Appl. 71(1), 349–355 (2016)

    Article  MathSciNet  Google Scholar 

  23. Tănăsescu, A., Popescu, P.G.: A fast singular value decomposition algorithm of general \(k\)-tridiagonal matrices. J. Computat. Sci. 31, 1–5 (2019)

    Article  MathSciNet  Google Scholar 

  24. Zhang, N., Feng, J., Li, Z., Jia, K.: Fast photoacoustic imaging reconstruction method based on lanczos double diagonalization. Chinese J. Lasers 45(3), 0307018 (2018)

    Article  Google Scholar 

  25. El-Mikkawy, M., Sogabe, T.: A new family of \(k\)-Fibonacci numbers. Appl. Math. Comput. 215(12), 4456–4461 (2010)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions that substantially enhanced the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ji-Teng Jia: conceived, designed and performed the analysis; Prepared the manuscript. Rong Xie: performed the numerical analysis and wrote the manuscript. Shuo Ni: performed the numerical experiments. Xiao-Yan Xu: contributed analysis tools.

Corresponding author

Correspondence to Ji-Teng Jia.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, JT., Xie, R., Ni, S. et al. An efficient breakdown-free algorithm for numerically evaluating the determinants of (pq)-pentadiagonal matrices. Numer Algor 97, 2031–2049 (2024). https://doi.org/10.1007/s11075-024-01777-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-024-01777-0

Keywords

Mathematics Subject Classification (2010)