Skip to main content
Log in

The Gold Partition Conjecture

  • Published:
Order Aims and scope Submit manuscript

Abstract

We present the Gold Partition Conjecture which immediately implies the \(1/3\)\(2/3\) Conjecture and tight upper bound for sorting. We prove the Gold Partition Conjecture for posets of width two, semiorders and posets containing at most \(11\) elements. We prove that the fraction of partial orders on an \(n\)-element set satisfying our conjecture converges to \(1\) when \(n\) approaches infinity. We discuss properties of a hypothetical counterexample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brightwell, G.: Semiorders and the \(1/3\)\(2/3\) conjecture. Order 5, 369–380 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brightwell, G.: Balanced pairs in partial orders. Discrete Math. 201, 25–52 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brightwell, G., Felsner, S., Trotter, W.T.: Balancing pairs and the cross-product conjecture. Order 12, 327–345 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brightwell, G., Wright, C.D.: The \(1/3\)\(2/3\) conjecture for \(5\)-thin posets. SIAM J. Discrete Math. 5, 467–474 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Compton, K.J.: \(0\)\(1\) laws in logic and combinatorics. In: Rival, I. (ed.) Proceedings of the NATO Advanced Study Institute on Algorithms and Order, pp. 353–383. Reidel, Dordrecht (1988)

    Google Scholar 

  6. Felsner, S., Trotter, W.T.: Balancing pairs in partially ordered sets. In: Combinatorics, Paul Erdős is Eighty (volume 1), pp. 145–157. Bolyai Society Mathematical Studies (1993)

  7. Fishburn, P.C.: On linear extension majority graphs of partial orders. J. Comb. Theory, Ser. B 21, 65–70 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gehrlein, W.V., Fishburn, P.C.: Linear extension majority cycles for small \((n\leq 9)\) partial orders. Comput. Math. Appl. 20, 41–44 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kahn, J., Saks, M.: Balancing poset extensions. Order 1, 113–126 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kislitsyn, S.S.: Finite partially ordered sets and their associated sets of permutations. Matematicheskiye Zametki 4, 511–518 (1968)

    Google Scholar 

  11. Kleitman, D.J., Rothschild, B.L.: Asymptotic enumeration of partial orders on a finite set. Trans. Am. Math. Soc. 205, 205–220 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Komlós, J.: A strange pigeon-hole principle. Order 7, 107–113 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Linial, N.: The information theoretic bound is good for merging. SIAM J. Comput. 13, 795–801 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Trotter, W.T., Gehrlein W.V., Fishburn, P.C.: Balance theorems for height-\(2\) posets. Order 9, 43–53 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Peczarski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peczarski, M. The Gold Partition Conjecture. Order 23, 89–95 (2006). https://doi.org/10.1007/s11083-006-9033-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-006-9033-1

Key words