Skip to main content
Log in

Order Embeddings with Irrational Codomain: Debreu Properties of Real Subsets

  • Published:
Order Aims and scope Submit manuscript

Abstract

The objective of this paper is to investigate the role of the set of irrational numbers as the codomain of order-preserving functions defined on topological totally preordered sets. We will show that although the set of irrational numbers does not satisfy the Debreu property it is still nonetheless true that any lower (respectively, upper) semicontinuous total preorder representable by a real-valued strictly isotone function (semicontinuous or not) also admits a representation by means of a lower (respectively, upper) semicontinuous strictly isotone function that takes values in the set of irrational numbers. These results are obtained by means of a direct construction. Moreover, they can be related to Cantor’s characterization of the real line to obtain much more general results on the semicontinuous Debreu properties of a wide family of subsets of the real line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliprantis, Ch. D., Border, K.C.: Infinite Dimensional Analysis: A Hitchiker’s Guide. Springer, Berlin Heidelberg New York (1999)

    Google Scholar 

  2. Beardon, A.F.: Debreu’s gap theorem. Econ. Theory 2, 150–152 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beardon, A.F.: Utility theory and continuous monotonic functions. Econ. Theory 4, 531–538 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beardon, A.F., Candeal, J.C., Herden, G., Induráin, E., Mehta, G.B.: The non-existence of a utility function and the structure of non-representable preference relations. J. Math. Econ. 37, 17–38 (2002)

    Article  MATH  Google Scholar 

  5. Beardon, A.F., Mehta, G.B.: Utility functions and the order type of the continuum. J. Math. Econ. 23, 387–390 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Birkhoff, G.: Lattice Theory (Third edition). American Mathematical Society, Providence, RI (1967)

    Google Scholar 

  7. Bosi, G., Herden, G.: On the structure of completely useful topologies. Appl. Gen. Topol. 3(2), 145–167 (2002)

    MATH  MathSciNet  Google Scholar 

  8. Bosi, G., Mehta, G.B.: Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof. J. Math. Econ. 38, 311–328 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bridges, D.S., Mehta, G.B.: Representations of preference orderings. Springer, Berlin Heidelberg New York (1995)

    MATH  Google Scholar 

  10. Courant, R., Robbins, H.: What is Mathematics?. Oxford University Press, London, UK (1941)

    Google Scholar 

  11. Debreu, G.: Representation if a preference ordering by a numerical function. In: Thrall, R., Coombs, C., Davies, R. (eds.) Decision Processes, pp. 159–166. Wiley, New York (1954)

    Google Scholar 

  12. Herden, G., Mehta, G.B.: Debreu’s Gap Lemma for Semicontinuous Utility Functions (Preprint). Universität GH Essen and University of Queensland (2003a)

  13. Herden, G., Mehta, G.B.: Semicontinuous Utility Functions (Preprint). Universität GH Essen and University of Queensland (2003b)

  14. Herden, G., Mehta, G.B.: The Debreu gap lemma and some generalizations. J. Math. Econ. 40(7), 747–769 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jech, T.: Set Theory. Academic, New York (1978)

    Google Scholar 

  16. Liouville, J.: Sur des classes très étendues de quantités dont la valeur n’ est ni algébrique ni même réductible à des traditionnelles algébriques. Comptes Rendus de l’ Académie des Sciences de Paris 18, 883–885 (1844)

    Google Scholar 

  17. Mahler, K.: On the approximation of π. Proceedings of the Nederland Akademie Wetenschappen, Series A 56, 29–42 (1953)

    Google Scholar 

  18. Mehta, G.B.: Preference and utility. In: Barberà, S., Hammond, P., Seidl, C. (eds.) Handbook of Utility Theory, pp. 1–47. Kluwer, Dordrecht (1998)

    Google Scholar 

  19. Oxtoby, J.C.: Measure and Category (Second edition). Springer, New York (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Induráin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campión, M.J., Candeal, J.C., Induráin, E. et al. Order Embeddings with Irrational Codomain: Debreu Properties of Real Subsets. Order 23, 343–357 (2006). https://doi.org/10.1007/s11083-006-9052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-006-9052-y

Key words

Mathematics Subject Classifications (2000)

Navigation