Skip to main content
Log in

Computable Linearizations of Well-partial-orderings

  • Published:
Order Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We analyze results on well-partial-orderings from the viewpoint of computability theory, and we answer a question posed by Diana Schmidt. We obtain the following results. De Jongh and Parikh showed that every well-partial-order has a linearization of maximal order type. We show that such a linearization can be found computably. We also show that the process of finding such a linearization is not computably uniform, not even hyperarithmetically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ash, C.J., Knight, J.F.: Pairs of recursive structures. Ann. Pure Appl. Logic 46(3), 211–234 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ash, C.J., Knight, J.: Computable Structures and the Hyperarithmetical Hierarchy. Elsevier Science, Amsterdam (2000)

    MATH  Google Scholar 

  3. de Jongh, D.H.J., Parikh, R.: Well-partial orderings and hierarchies. Nederl. Akad. Wetensch. Proc. Ser. A 80 = Indag. Math. 39(3), 195–207 (1977)

  4. Hessenberg, G.: Grundbegriffe der mengenlehre. Abhandlungen der Friesschen Schule N.S. 1.4(75) (1906)

  5. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. 2(3), 326–336 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Trans. Am. Math. Soc. 95, 210–225 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kruskal J.B.: The theory of well-quasi-ordering: A frequently discovered concept. J. Comb. Theory Ser. A 13, 297–305 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  8. Laver, R.: On Fraïssé’s order type conjecture. Ann. of Math. 93(2), 89–111 (1971)

    Article  MathSciNet  Google Scholar 

  9. Malicki, M., Rutkowski, A.: On operations and linear extensions of well partially ordered sets. Order 21(1), 7–17 (2005)

    Article  MathSciNet  Google Scholar 

  10. Nash-Williams, C.St.J.A.: On well-quasi-ordering transfinite sequences. Proc. Camb. Philos. Soc. 61, 33–39 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rosenstein, J.: Linear Orderings. Academic, New York (1982)

    MATH  Google Scholar 

  12. Robertson, N, Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory Ser. B 92(2), 325–357 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Schmidt, D.: Well-partial orderings and their maximal order types. Habilitationsschrift, University of Heidelberg (1979)

  14. Soare, R.I.: Recursively enumerable sets and degrees. Perspectives in Mathematical Logic. A study of computable functions and computably generated sets. Springer, Berlin (1987)

    Google Scholar 

  15. Spector, C.: Recursive well-orderings. J. Symb. Log. 20, 151–163 (1955)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Montalbán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montalbán, A. Computable Linearizations of Well-partial-orderings. Order 24, 39–48 (2007). https://doi.org/10.1007/s11083-007-9058-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-007-9058-0

Keywords

Navigation