Skip to main content
Log in

Complete Commutative Basic Algebras

  • Published:
Order Aims and scope Submit manuscript

Abstract

By a basic algebra is meant an MV-like algebra (A, ⊕, ¬, 0) of type 〈2, 1, 0〉 derived in a natural way from bounded lattices having antitone involutions on their principal filters. In the previous paper (Botur and Halaš, Mult. Valued Log. Soft Comp., 2007) we have shown that finite basic algebras for which the operation ⊕ is commutative are MV-algebras. In this paper we generalize this result by considering commutative basic algebras for which the underlying lattice is complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Botur, M., Halaš, R.: Finite commutative basic algebras are MV-algebras. Mult. Valued Log. Soft Comp. (2007) (in press)

  2. Chajda, I.: Lattices and semilattices having an antitone involution in every upper interval. Comment. Math. Univ. Carol. 44, 577–585 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Chajda, I., Emanovský, P.: Bounded lattices with antitone involutions and properties of MV-algebras. Discuss. Math. Gen. Algebra Appl. 24, 31–42 (2004)

    MATH  MathSciNet  Google Scholar 

  4. Chajda, I., Halaš, R.: A basic algebra in an MV-algebra iff it is a BCC-algebra. Int. J. Theor. Phys. (2007) (in press)

  5. Chajda, I., Halaš, R., Kühr, J.: Distributive lattices with sectionally antitone involutions. Acta Sci. Math. (Szeged) 71, 19–33 (2005)

    MATH  MathSciNet  Google Scholar 

  6. Chajda, I., Halaš, R., Kühr, J.: Multiple valued quantum algebras. Algebra Universalis (2007) (in press)

  7. Chang, C.C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88, 464–490 (1958)

    Article  Google Scholar 

  8. Cignoli, R.L.O., D’Ottaviano, M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  9. Dvurčenskij, A., Pulmannová, S.: New Trends in Quantum Scructures. Kluwer, Dordrecht (2000)

    Google Scholar 

  10. Foulis, D., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1331–1352 (1994)

    Article  MathSciNet  Google Scholar 

  11. Gispert, J., Mundici, D.: MV-algebras: a variety for magnitudes with archimedean units. Algebra Univers. 53, 7–13 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Giuntini, R.: Quantum MV-algebras. Stud. Log. 56, 303–417 (1996)

    Article  MathSciNet  Google Scholar 

  13. Hrbacek, K., Jech, T.: Introduction to set theory, 3rd edn. Dekker, New York, Basel (1999)

    MATH  Google Scholar 

  14. Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80, 24–29 (1999)

    Google Scholar 

  15. Riečanová, Z.: Generalization of blocks for D-lattices and lattice-ordered effect algebras. Int. J. Theor. Phys. 39, 231–237 (2000)

    Article  Google Scholar 

  16. Svozil, K.: Quantum Logic. Singapore (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Botur.

Additional information

Research is supported by the Research and Development Council of Czech Government via project MSN 6198959214.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botur, M., Halaš, R. Complete Commutative Basic Algebras. Order 24, 89–105 (2007). https://doi.org/10.1007/s11083-007-9061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-007-9061-5

Keywords

Mathematics Subject Classifications (2000)

Navigation