Abstract
An abelian ℓ-group with strong unit (\(\user1{\mathcal{L}}_1 \)-object) G is hyperarchimedean (HA) iff G ≤ C(YG) (the ℓ-group of real continuous functions on the maximal ideal space, YG) with λ(g) = inf{ ∣ g(x) ∣ ≠ 0} > 0 for each 0 ≠ g ∈ G. In case inf{λ(g):0 ≠ g ∈ G} > 0, we call G uniformly hyperarchimedean (UHA). This paper: examines the structure of the UHA groups in detail; shows that UHA solves the problem: when is an \(\user1{\mathcal{L}}_1 \)-product HA?; describes completely the \(\user1{\mathcal{L}}_1 \) − HSP-classes which are contained in HA. Final remarks detail the connection with MV-algebras.
Similar content being viewed by others
References
Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et Anneaux Réticulés. Springer (1977)
Cignoli, R.: Natural dualities for the algebras of Lukasiewicz finitely-valued logics. (abstract in) Bull. Symb. Log. 2, 218 (1996)
Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Trends in Logic, vol. 7. Kluwer (2000)
Cignoli, R., Dubuc, E., Mundici, D.: Extending Stone duality to multisets and locally finite MV-algebras. J. Pure Appl. Algebra 189, 37–59 (2004)
Cignoli, R., Elliot, G., Mundici, D.: Reconstructing C*-algebras from their Murray von Neumann orders. Adv. Math. 101, 166–179 (1993)
Cohn, P.M.: Universal Algebra (revised edition). Reidel (1981)
Conrad, P.: Epi-archimedean groups. Czech. Math. J. 24, 192–218 (1974)
Gillman, L., Jerison, M.: Rings of Continuous Functions. D. Van Nostrand Publ. Co. (1960)
Hager, A., Kimber, C.: Some examples of hyperarchimedean lattice-ordered groups. Fundam. Math. 182, 107–122 (2004)
Hager, A., Kimber, C., McGovern, W.Wm.: Least integer closed groups. In: Martinez, J. (ed.) Ordered Algebraic Structures, pp. 245–260. Kluwer (2002)
Hager, A., Robertson, L.: Representing and ringifying a Riesz space. Symposia Math. 21, 411–431 (1977)
Herrlich, H., Strecker, G.: Category Theory. Heldermann Verlag (1979)
Neiderkorn, P.: Natural dualities for varieties of MV -algebras, I. J. Math. Anal. Appl. 255, 58–73 (2001)
Yosida, K.: On the representation of the vector lattice. Proc. Imp. Acad. Tokyo 18, 339–343 (1942)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hager, A.W., Kimber, C.M. Uniformly Hyperarchimedean Lattice-Ordered Groups. Order 24, 121–131 (2007). https://doi.org/10.1007/s11083-007-9062-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-007-9062-4