Skip to main content
Log in

The Length of Chains in Modular Algebraic Lattices

  • Published:
Order Aims and scope Submit manuscript

Abstract

We show that, for a large class of countable order types α, a modular algebraic lattice L contains no chain of type α if and only if K(L), the join-semilattice of compact elements of L, contains neither a chain of type α nor a join-subsemilattice isomorphic to [ω] < ω, the set of finite subsets of ω ordered by inclusion. We give a description of the indivisible members of this class. It includes the order types ω * of the chain of negative integers and η of the chain of rational numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G.: Lattice Theory. AMS Colloquium Publication vol. XXV. Third Ed. AMS, Providence (1967)

    Google Scholar 

  2. Bonnet, R.: Stratifications et extensions des genres de chaînes dénombrables. Comptes Rendus Acad. Sc. Paris 269, Série A, 880–882 (1969)

    MATH  MathSciNet  Google Scholar 

  3. Bonnet, R., Pouzet, M.: Extensions et stratifications d’ensembles dispersés. Comptes Rendus Acad. Sc. Paris 268, Série A, 1512–1515 (1969)

    MATH  MathSciNet  Google Scholar 

  4. Bonnet, R., Pouzet, M.: Linear extension of ordered sets, in ordered sets. (I. Rival) ed. Reidel. ASI 83, 125–170 (1982)

    MathSciNet  Google Scholar 

  5. Cantor, G.: Beitrage Zur Begrundung der transfiniten Menenlehre. Math. Ann. 49, 207–246 (1897)

    Article  MathSciNet  Google Scholar 

  6. Chakir, I.: Chaînes d’idéaux et dimension algébrique des treillis distributifs, Thèse de doctorat, Université Claude-Bernard(Lyon1) 18 décembre, n 1052 (1992)

  7. Chakir, I., Pouzet, M.: The length of chains in distributive lattices. Abstr. Am. Math. Soc. 92 T-06-118, 502–503 (1992)

  8. Chakir, I., Pouzet, M.: Infinite independent sets in distributive lattices. Algebra Univers. 53(2), 211–225 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chakir, I., Pouzet, M.: A characterization of well-founded algebraic lattices. Circulating manuscript, submitted to Order, 17p. (June 2005) (under revision)

  10. Duffus, D., Pouzet, M., Rival, I.: Complete ordered sets with no infinite antichains. Discrete Math. 35, 39–52 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fraïssé, R.: Theory of Relations, Revised Edition. Studies in Logic and the Foundations of Mathematics, vol. 145. North Holland, Amsterdam (2000)

    Google Scholar 

  12. Grätzer, G.: General Lattice Theory. Birkhäuser, Stuttgard (1998)

    MATH  Google Scholar 

  13. Hausdorff, F.: Grundzge einer Theorie der Geordnete Mengen. Math. Ann. 65, 435–505 (1908)

    Article  MathSciNet  Google Scholar 

  14. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. 2(3), 326–336 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  15. Laver, R.: On Fraïssé’s order type conjecture. Ann. Math. 93, 89–111 (1971)

    Article  MathSciNet  Google Scholar 

  16. Laver, R.: An order type decomposition theorem. Ann. Math. 98, 96–119 (1973)

    Article  MathSciNet  Google Scholar 

  17. Lawson, J.D., Mislove, M., Priestley, H.A.: Infinite antichains and duality theories. Houst. J. Math. 14(3), 423–441 (1988)

    MATH  MathSciNet  Google Scholar 

  18. Lawson, J.D., Mislove, M., Priestley, H.A.: Ordered sets with no infinite antichains. Discrete Math. 63, 225–230 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pouzet, M., Zaguia, N.: Ordered sets with no chains of ideals of a given type. Order 1, 159–172 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rosenstein, J.G.: Linear Ordering. Academic, New York (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice Pouzet.

Additional information

The second author was supported by INTAS project Universal Algebra and Lattice Theory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakir, I., Pouzet, M. The Length of Chains in Modular Algebraic Lattices. Order 24, 227–247 (2007). https://doi.org/10.1007/s11083-007-9070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-007-9070-4

Keywords

Mathematics Subject Classifications (2000)

Navigation