Abstract
We show that, for a large class of countable order types α, a modular algebraic lattice L contains no chain of type α if and only if K(L), the join-semilattice of compact elements of L, contains neither a chain of type α nor a join-subsemilattice isomorphic to [ω] < ω, the set of finite subsets of ω ordered by inclusion. We give a description of the indivisible members of this class. It includes the order types ω * of the chain of negative integers and η of the chain of rational numbers.
Similar content being viewed by others
References
Birkhoff, G.: Lattice Theory. AMS Colloquium Publication vol. XXV. Third Ed. AMS, Providence (1967)
Bonnet, R.: Stratifications et extensions des genres de chaînes dénombrables. Comptes Rendus Acad. Sc. Paris 269, Série A, 880–882 (1969)
Bonnet, R., Pouzet, M.: Extensions et stratifications d’ensembles dispersés. Comptes Rendus Acad. Sc. Paris 268, Série A, 1512–1515 (1969)
Bonnet, R., Pouzet, M.: Linear extension of ordered sets, in ordered sets. (I. Rival) ed. Reidel. ASI 83, 125–170 (1982)
Cantor, G.: Beitrage Zur Begrundung der transfiniten Menenlehre. Math. Ann. 49, 207–246 (1897)
Chakir, I.: Chaînes d’idéaux et dimension algébrique des treillis distributifs, Thèse de doctorat, Université Claude-Bernard(Lyon1) 18 décembre, n 1052 (1992)
Chakir, I., Pouzet, M.: The length of chains in distributive lattices. Abstr. Am. Math. Soc. 92 T-06-118, 502–503 (1992)
Chakir, I., Pouzet, M.: Infinite independent sets in distributive lattices. Algebra Univers. 53(2), 211–225 (2005)
Chakir, I., Pouzet, M.: A characterization of well-founded algebraic lattices. Circulating manuscript, submitted to Order, 17p. (June 2005) (under revision)
Duffus, D., Pouzet, M., Rival, I.: Complete ordered sets with no infinite antichains. Discrete Math. 35, 39–52 (1981)
Fraïssé, R.: Theory of Relations, Revised Edition. Studies in Logic and the Foundations of Mathematics, vol. 145. North Holland, Amsterdam (2000)
Grätzer, G.: General Lattice Theory. Birkhäuser, Stuttgard (1998)
Hausdorff, F.: Grundzge einer Theorie der Geordnete Mengen. Math. Ann. 65, 435–505 (1908)
Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. 2(3), 326–336 (1952)
Laver, R.: On Fraïssé’s order type conjecture. Ann. Math. 93, 89–111 (1971)
Laver, R.: An order type decomposition theorem. Ann. Math. 98, 96–119 (1973)
Lawson, J.D., Mislove, M., Priestley, H.A.: Infinite antichains and duality theories. Houst. J. Math. 14(3), 423–441 (1988)
Lawson, J.D., Mislove, M., Priestley, H.A.: Ordered sets with no infinite antichains. Discrete Math. 63, 225–230 (1987)
Pouzet, M., Zaguia, N.: Ordered sets with no chains of ideals of a given type. Order 1, 159–172 (1984)
Rosenstein, J.G.: Linear Ordering. Academic, New York (1982)
Author information
Authors and Affiliations
Corresponding author
Additional information
The second author was supported by INTAS project Universal Algebra and Lattice Theory.
Rights and permissions
About this article
Cite this article
Chakir, I., Pouzet, M. The Length of Chains in Modular Algebraic Lattices. Order 24, 227–247 (2007). https://doi.org/10.1007/s11083-007-9070-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-007-9070-4