Abstract
Let L be a finite lattice and let \({\widehat{L}}=L-\{{\hat{0}},{\hat{1}}\}\). It is shown that if the order complex \(\Delta({\widehat{L}})\) satisfies \({\tilde{\rm H}}_{k-2}\bigl(\Delta({\widehat{L}})\bigr) \neq 0\) then |L| ≥ 2k. Equality |L| = 2k holds iff L is isomorphic to the Boolean lattice {0,1}k.
Similar content being viewed by others
References
Björner, A.: Topological methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, pp. 1819–1872. North-Holland, Amsterdam (1995)
Kozlov, D.: Convex hulls of f- and β-vectors. Discrete Comput. Geom. 18, 421–431 (1997)
Quillen, D.: Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. Math. 28, 101–128 (1978)
Stanley, R.: Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge (1997)
Ziegler, G.: Posets with maximal Möbius function. J. Combin. Theory Ser. A 56, 203–222 (1991)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research supported by the Israel Science Foundation.
Rights and permissions
About this article
Cite this article
Meshulam, R. On the Homological Dimension of Lattices. Order 25, 153–155 (2008). https://doi.org/10.1007/s11083-008-9086-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-008-9086-4