Skip to main content
Log in

On the Homological Dimension of Lattices

  • Published:
Order Aims and scope Submit manuscript

Abstract

Let L be a finite lattice and let \({\widehat{L}}=L-\{{\hat{0}},{\hat{1}}\}\). It is shown that if the order complex \(\Delta({\widehat{L}})\) satisfies \({\tilde{\rm H}}_{k-2}\bigl(\Delta({\widehat{L}})\bigr) \neq 0\) then |L| ≥ 2k. Equality |L| = 2k holds iff L is isomorphic to the Boolean lattice {0,1}k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Björner, A.: Topological methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, pp. 1819–1872. North-Holland, Amsterdam (1995)

    Google Scholar 

  2. Kozlov, D.: Convex hulls of f- and β-vectors. Discrete Comput. Geom. 18, 421–431 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Quillen, D.: Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. Math. 28, 101–128 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  4. Stanley, R.: Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  5. Ziegler, G.: Posets with maximal Möbius function. J. Combin. Theory Ser. A 56, 203–222 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Meshulam.

Additional information

Research supported by the Israel Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meshulam, R. On the Homological Dimension of Lattices. Order 25, 153–155 (2008). https://doi.org/10.1007/s11083-008-9086-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-008-9086-4

Keywords