Skip to main content
Log in

Construction of Some Uncountable 2-Arc-Transitive Bipartite Graphs

  • Published:
Order Aims and scope Submit manuscript

Abstract

We give various constructions of uncountable arc-transitive bipartite graphs employing techniques from partial orders, starting with the cycle-free case, but generalizing to cases where this may be violated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence (1967)

  2. Creed, P., Truss, J.K., Warren, R.: The structure of k-CS-transitive cycle-free partial orders with infinite chains. Math. Proc. Camb. Philos. Soc. 126, 175–194 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  4. Droste, M.: Structure of partially ordered sets with transitive automorphism groups. Mem. Am. Math. Soc. 57, 334 (1985)

    MathSciNet  Google Scholar 

  5. Goldstern, M., Grossberg, R., Kojman, M.: Infinite homogeneous bipartite graphs with unequal sides. Discrete Math. 149(1-3), 69–82 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gray, R., Truss, J.K.: Construction of some countable one-arc-transitive bipartite graphs. Discrete Math. (in press)

  7. Gray, R., Truss, J.K.: Cycle-free partial orders and ends of graphs. Math. Proc. Camb. Philos. Soc. (in press)

  8. Hrushovski, E.: Extending partial isomorphisms of graphs. Combinatorica 12, 411–416 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kojman, M., Shelah, S.: Homogeneous families and their automorphism groups. J. Lond. Math. Soc. 52, 303–317 (1995)

    MATH  MathSciNet  Google Scholar 

  10. Giudici, M., Cai, H., Praeger, C.E.: Analysing finite locally s-arc transitive graphs. Trans. Am. Math. Soc. 356, 291–317 (2004)

    Article  MATH  Google Scholar 

  11. Truss, J.K.: Betweenness relations and cycle-free partial orders. Math. Proc. Camb. Philos. Soc. 119, 631–643 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Truss, J.K.: On k-CS-transitive cycle-free partial orders with finite alternating chains. Order 15, 151–165 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Warren, R.: The structure of k-CS-transitive cycle-free partial orders. Mem. Am. Math. Soc. 129, 614 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Truss.

Additional information

This work was supported by a grant from the EPSRC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Droste, M., Gray, R. & Truss, J.K. Construction of Some Uncountable 2-Arc-Transitive Bipartite Graphs. Order 25, 349–357 (2008). https://doi.org/10.1007/s11083-008-9098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-008-9098-0

Keywords

Mathematics Subject Classification (2000)