Skip to main content
Log in

No Finite–Infinite Antichain Duality in the Homomorphism Poset of Directed Graphs

  • Published:
Order Aims and scope Submit manuscript

Abstract

\(\mathbb D\) denotes the homomorphism poset of finite directed graphs. An antichain duality is a pair \(\left\langle{\mathcal F},{\mathcal D}\right\rangle\) of antichains of \(\mathbb D\) such that \(({{\mathcal F}\!\!\to}) \cup ({\to\!\!{\mathcal D}}) = \mathbb D\) is a partition. A generalized duality pair in\(\mathbb{D}\) is an antichain duality \(\left\langle{\mathcal F},{\mathcal D}\right\rangle\) with finite \({\mathcal F}\) and \({\mathcal D}.\) We give a simplified proof of the Foniok–Nešetřil–Tardif theorem for the special case \(\mathbb D\), which gave full description of the generalized duality pairs in \(\mathbb{D}\). Although there are many antichain dualities \(\left\langle{\mathcal F},{\mathcal D}\right\rangle\) with infinite \({\mathcal D}\) and \({\mathcal F}\), we can show that there is no antichain duality \(\left\langle{\mathcal F},{\mathcal D}\right\rangle\) with finite \({\mathcal F}\) and infinite \({\mathcal D}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlswede, R., Erdős, P.L., Graham, N.: A splitting property of maximal antichains. Combinatorica 15, 475–480 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Duffus, D., Erdős, P.L., Nešetřil, J., Soukup, L.: Antichains in the homomorphism order of graphs. Comment. Math. Univ. Carol. 48(4), 571–583 (2007)

    MATH  Google Scholar 

  3. Erdős, P.L.: Splitting property in infinite posets. Discrete Math. 163, 251–256 (1997)

    Article  MathSciNet  Google Scholar 

  4. Erdős, P.L., Soukup, L.: How to split antichains in infinite posets. Combinatorica 27(2), 147–161 (2007)

    Article  MathSciNet  Google Scholar 

  5. Erdős, P.L., Soukup, L.: Antichains and duality pairs in the digraph-poset—extended abstract. In: Boudabbous, Y., Zaguia, N.(eds.) Proc. Int. Conf. on Relations, Orders and Graphs: Interaction with Computer Science, pp. 327–332. ROGICS ’08 May 12-17, Mahdia-Tunisia. ISBN: 978-0-9809498-0-3 (2008)

  6. Foniok, J., Nešetřil, J., Tardif, C.: Generalised dualities and finite maximal antichains. In Fomin, F.V. (ed.) Graph-Theoretic Concepts in Computer Science’06. LNCS, vol. 4271, pp. 27–36 (2006)

  7. Foniok, J., Nešetřil, J., Tardif, C.: Generalized dualities and maximal finite antichains in the homomorphism order of relational structures. Eur. J. Comb 29, 881–899 (2008)

    Article  MATH  Google Scholar 

  8. Foniok, J., Nešetřil, J., Tardif, C.: On Finite Maximal Antichains in the Homomorphism Order. Electron. Notes Discrete Math. 29, 389–396 (2007)

    Article  Google Scholar 

  9. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  10. Hell, P., Nešetřil, J., Zhu, X.: Duality and polynomial testing of tree homomorphisms. Trans. Am. Math. Soc. 348, 1281–1297 (1996)

    Article  MATH  Google Scholar 

  11. Hubička, J., Nešetřil, J.: Universal partial order represented by means of oriented trees and other simple graphs. Eur. J. Comb. 26, 765–778 (2005)

    Article  MATH  Google Scholar 

  12. Hubička, J., Nešetřil, J.: Finite paths are universal. Order 22, 21–40 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Komárek, P.: Good Characterizations in the Class of Oriented Graphs (in Czech). Ph.D. Thesis, Czechoslovak Academy of Sciences (1987)

  14. Nešetřil, J., Pultr, A.: On classes of relations and graphs determined by subobjects and factorobjects. Discrete Math. 22, 287–300 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nešetřil, J., Tardif, C.: Duality theorems for finite structures (characterising gaps and good characterisations). J. Comb. Theory Ser. (B) 80, 80–97 (2000)

    Article  MATH  Google Scholar 

  16. Pultr, A., Trnková, V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter L. Erdős.

Additional information

The first author was partly supported by Hungarian NSF, under contract Nos. NK62321, AT048826 and K68262. The second author was partly supported by Hungarian NSF, under contract No. K61600 and K 68262. This research started when the first author visited Manuel Bodirsky and Mathias Schacht of Humboldt University, Berlin, under the umbrella of FIST program of Marie Curie Host Fellowship for the Transfer of Knowledge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdős, P.L., Soukup, L. No Finite–Infinite Antichain Duality in the Homomorphism Poset of Directed Graphs. Order 27, 317–325 (2010). https://doi.org/10.1007/s11083-009-9118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-009-9118-8

Keywords