Skip to main content
Log in

Projections in a Synaptic Algebra

  • Published:
Order Aims and scope Submit manuscript

Abstract

A synaptic algebra is an abstract version of the partially ordered Jordan algebra of all bounded Hermitian operators on a Hilbert space. We review the basic features of a synaptic algebra and then focus on the interaction between a synaptic algebra and its orthomodular lattice of projections. Each element in a synaptic algebra determines and is determined by a one-parameter family of projections—its spectral resolution. We observe that a synaptic algebra is commutative if and only if its projection lattice is boolean, and we prove that any commutative synaptic algebra is isomorphic to a subalgebra of the Banach algebra of all continuous functions on the Stone space of its boolean algebra of projections. We study the so-called range-closed elements of a synaptic algebra, prove that (von Neumann) regular elements are range-closed, relate certain range-closed elements to modular pairs of projections, show that the projections in a synaptic algebra form an M-symmetric orthomodular lattice, and give several sufficient conditions for modularity of the projection lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Springer-Verlag, New York (1971)

    MATH  Google Scholar 

  2. Alfsen, E.M., Shultz, F.W., Størmer, E.: A Gelfand-Neumark theorem for Jordan algebras. Adv. Math. 28, 11–56 (1978)

    Article  MATH  Google Scholar 

  3. Beran, L.: Orthomodular Lattices, An Algebraic Approach. Mathematics and its Applications, vol. 18. D. Reidel Publishing Company, Dordrecht (1985)

    Google Scholar 

  4. Birkhoff, G.: Lattice Theory, 3rd edn. Amer. Math. Soc. Colloquium Publications XXV (1967)

  5. Blyth, T.S., Janowitz, M.F.: Residuation Theory. International Series of Monographs in Pure and Applied Mathematics, vol. 102. Pergamon Press, Oxford-New York-Toronto (1972)

    Google Scholar 

  6. Foulis, D.J.: Conditions for the modularity of an orthomodular lattice. Pac. J. Math. II, 889–895 (1961)

    MathSciNet  Google Scholar 

  7. Foulis, D.J.: A note on orthomodular lattices. Port. Math. 21(Fasc. 1), 65–72 (1962)

    MATH  MathSciNet  Google Scholar 

  8. Foulis, D.J.: Relative inverses in Baer *-semigroups. Mich. Math. J. 10, 65–84 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  9. Foulis, D.J.: Compressions on partially ordered abelian groups. Proc. Am. Math. Soc. 132, 3581–3587 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Foulis, D.J.: Rings with effects. arXiv:quant—ph/0609181v1 (2006)

  11. Foulis, D.J.: Synaptic algebras. Math. Slovaca (in press)

  12. Foulis, D.J., Pulmannová, S.: Spectral resolution in an order unit space. Rep. Math. Phys. 62(3), 323–344 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Foulis, D.J., Pulmannová, S.: Spin factors as generalized Hermitian algebras. Found. Phys. 39, 237–255 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Foulis, D.J., Pulmannová, S.: Generalized Hermitian algebras. Int. J. Theor. Phys. 48, 1320–1333 (2009)

    Article  MATH  Google Scholar 

  15. Foulis, D.J., Pulmannová, S.: Regular elements in generalized Hermitian Algebras. Math. Slovaca (in press)

  16. Gudder, S., Pulmannová, S., Bugajski, S., Beltrametti, E.: Convex and linear effect algebras. Rep. Math. Phys. 44(3), 359–379 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Handelman, D., Higgs, D., Lawrence, J.: Directed abelian groups, countably continuous rings, and Rickart C*-algebras. J. Lond. Math. Soc. (2) 21, 193–202 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  18. Halmos, P.R.: Measure Theory. D. van Nostrand, New York (1954)

    Google Scholar 

  19. Kalmbach, G.: Orthomodular Lattices. Academic Press, London, New York. ISBN 0-12-394580-1 (1983)

    MATH  Google Scholar 

  20. Kaplansky, I.: Regular Banach algebras. J. Indian Math. Soc. (N.S.) 12, 57–62 (1948)

    MathSciNet  Google Scholar 

  21. Kaplansky, I.: Projections in Banach algebras. Ann. Math. 53(2), 235–249 (1951)

    Article  MathSciNet  Google Scholar 

  22. Kaplansky, I.: Rings of Operators. W.A. Benjamin, Inc., New York/Amsterdam (1968)

    MATH  Google Scholar 

  23. McCrimmon, K.: A taste of Jordan algebras. Universitext, Springer-Verlag, New York. ISBN: 0-387-95447-3 (2004)

    MATH  Google Scholar 

  24. Mackey, G.: On infinite dimensional linear spaces. Trans. Am. Math. Soc. 57, 155–207 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  25. Maeda, F., Maeda S.: Theory of Symmetric Lattices. Springer-Verlag, Berlin, Heidelberg, New York (1970)

    MATH  Google Scholar 

  26. Schreiner, E.A.: Modular pairs in orthomodular lattices. Pac. J. Math. 19, 519–528 (1966)

    MATH  MathSciNet  Google Scholar 

  27. Sarymsakov, T.A., Ayupov, Sh.A., Khadzhiev, Dzh., Chilin, V.I.: Uporyadochennye algebry (Russian) [Ordered algebras] “Fan”. Tashkent (1983)

  28. Topping, D.M.: Jordan Algebras of Self-Adjoint Operators. A.M.S. Memoir, vol. 53. AMS, Providence, Rhode Island (1965)

    Google Scholar 

  29. Topping, D.M.: Asymptoticity and semimodularity in projection lattices. Pac. J. Math. 20(2), 317–325 (1967)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Foulis.

Additional information

The second author was supported by Research and Development Support Agency under the contract No. APVV-0071-06, grant VEGA 2/6088/26 and Center of Excellence SAS, CEPI I/2/2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foulis, D.J., Pulmannová, S. Projections in a Synaptic Algebra. Order 27, 235–257 (2010). https://doi.org/10.1007/s11083-010-9148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-010-9148-2

Keywords

Mathematics Subject Classifications (2000)

Navigation