Skip to main content
Log in

On Nested Chain Decompositions of Normalized Matching Posets of Rank 3

  • Published:
Order Aims and scope Submit manuscript

An Erratum to this article was published on 21 August 2010

Abstract

In 1975, J. Griggs conjectured that a normalized matching rank-unimodal poset possesses a nested chain decomposition. This elegant conjecture remains open even for posets of rank 3. Recently, Hsu, Logan, and Shahriari have made progress by developing techniques that produce nested chain decompositions for posets with certain rank numbers. As a demonstration of their methods, they prove that the conjecture is true for all rank 3 posets of width at most 7. In this paper, we present new general techniques for creating nested chain decompositions, and, as a corollary, we demonstrate the validity of the conjecture for all rank 3 posets of width at most 11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, I.: Some problems in combinatorial number theory. Ph.D. thesis, University of Nottingham, Nottingham, United Kingdom (1967)

  2. Anderson, I.: Combinatorics of Finite Sets. Dover Publications, Mineola, NY (2002). Corrected reprint of the 1989 edition published by Oxford University Press, Oxford

    MATH  Google Scholar 

  3. Bollobás, B.: On generalized graphs. Acta Math. Acad. Sci. Hung. 16, 447–452 (1965)

    Article  MATH  Google Scholar 

  4. Engel, K.: Sperner theory. In: Encyclopedia of Mathematics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  5. Gansner, E.R.: On the lattice of order ideals of an up-down poset. Discrete Math. 39, 113–122 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Graham, R.L., Harper, L.H.: Some results on matching in bipartite graphs. SIAM J. Appl. Math. 17, 1017–1022 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  7. Greene, C., Kleitman, D.J.: The Structure of Sperner k-Families. J. Comb. Theory, Ser. A 20, 80–88 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Griggs, J.R.: Sufficient conditions for a symmetric chain order. SIAM J. Appl. Math. 32, 807–809 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. Griggs, J.R.: Symmetric Chain Orders, Sperner Theorems, and Loop Matchings. Ph.D. thesis, MIT (1977)

  10. Griggs, J.R.: On chains and Sperner k-families in ranked posets. J. Comb. Theory, Ser. A 28, 156–168 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Griggs, J.R.: Problems on chain partitions. Discrete Math. 72, 157–162 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Griggs, J.R.: Matchings, cutsets, and chain partitions in graded posets. Discrete Math. 144, 33–46 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Harper, L.H.: The morphology of partially ordered sets. J. Comb. Theory, Ser. A 17, 44–58 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hsieh, W.N., Kleitman, D.J.: Normalized matching in direct products of partial orders. Stud. Appl. Math. 52, 285–289 (1973)

    MATH  MathSciNet  Google Scholar 

  15. Hsu, T., Logan, M., Shahriari, S.: Methods for nesting rank 3 normalized matching rank-unimodal posets. Discrete Math. 309(3), 521–531 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hsu, T., Logan, M., Shahriari, S., Towse, C.: Partitioning the Boolean lattice into a minimal number of chains of relatively uniform size. Eur. J. Comb. 24, 219–228 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hsu, T., Logan, M., Shahriari, S.: The generalized Füredi conjecture holds for finite linear lattices. Discrete Math. 306(23), 3140–3144 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kleitman, D.J.: On an extremal property of antichains in partial orders. The LYM property and some of its implications and applications. In: Combinatorics (Proc. NATO Advanced Study Inst., Breukelen, 1974), Part 2: Graph Theory; Foundations, Partitions and Combinatorial Geometry, pp. 77–90. Math. Centrum, Amsterdam (1974). Math. Centre Tracts, No. 56

  19. Lubell, D.: A short proof of Sperner’s lemma. J. Comb. Theory 1, 299 (1966)

    Article  MathSciNet  Google Scholar 

  20. Mešalkin, L.D.: A generalization of Sperner’s theorem on the number of subsets of a finite set. Teor. Veroatn ee Primen. 8, 219–220 (1963)

    Google Scholar 

  21. Pearsall, A., Shahriari, S.: Chain decompositions of normalized matching posets of rank 2. To appear in the Lecture Notes Series of the Ramanujan Mathematical Society

  22. Perfect, H.: Addendum to: “A short proof of the existence of k-saturated partitions of partially ordered sets” [Adv. in Math. 33(3), 207–211 (1979); MR0546293 (82c:06008)] by M. Saks, Glasgow Math. J. 25(1), 31–33 (1984)

  23. Saks, M.: A short proof of the existence of k-saturated partitions of partially ordered sets. Adv. Math. 33(3), 207–211 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  24. Shelley, K.: Matchwebs. Master’s thesis, San José State University (2007)

  25. Wang, Y.: Nested chain partitions of LYM posets. Discrete Appl. Math. 145(3), 493–497 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. West, D.B., Harper, L.H., Daykin, D.E.: Some remarks on normalized matching. J. Comb. Theory, Ser. A 35, 301–308 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  27. Yamamoto, K.: Logarithmic order of free distributive lattice. J. Math. Soc. Jpn. 6, 343–353 (1954)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriar Shahriari.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11083-010-9173-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escamilla, E.G., Nicolae, A.C., Salerno, P.R. et al. On Nested Chain Decompositions of Normalized Matching Posets of Rank 3. Order 28, 357–373 (2011). https://doi.org/10.1007/s11083-010-9164-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-010-9164-2

Keywords

Mathematics Subject Classifications (2010)

Navigation