Skip to main content
Log in

Priestley Rings and Priestley Order-Compactifications

  • Published:
Order Aims and scope Submit manuscript

Abstract

We introduce Priestley rings of upsets (of a poset) and prove that inequivalent Priestley ring representations of a bounded distributive lattice L are in 1-1 correspondence with dense subspaces of the Priestley space of L. This generalizes a 1955 result of Bauer that inequivalent reduced field representations of a Boolean algebra B are in 1-1 correspondence with dense subspaces of the Stone space of B. We also introduce Priestley order-compactifications and Priestley bases of an ordered topological space, and show that they are in 1-1 correspondence. This generalizes a 1961 result of Dwinger that zero-dimensional compactifications of a topological space are in 1-1 correspondence with its Boolean bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banaschewski, B.: Über nulldimensionale Räume. Math. Nachr. 13, 129–140 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bauer, H.: Darstellung additiver Funktionen auf Booleschen Algebren als Mengenfunktionen. Arch. Math. 6, 215–222 (1955)

    Article  MATH  Google Scholar 

  3. Bezhanishvili, G.: Zero-dimensional proximities and zero-dimensional compactifications. Topol. its Appl. 156(8), 1496–1504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bezhanishvili, G., Gehrke, M., Mines, R., Morandi, P.J.: Profinite completions and canonical extensions of Heyting algebras. Order 23(2–3), 143–161 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Canfell, M.J.: Semi-algebras and rings of continuous functions. Ph.D. thesis, University of Edinburgh (1968)

  6. Choe, T.H.: Partially ordered topological spaces. An. Acad. Bras. Ciênc. 51(1), 53–63 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Cornish, W.H.: On H. Priestley’s dual of the category of bounded distributive lattices. Mat. Vesn. 12(27)(4), 329–332 (1975)

    MathSciNet  Google Scholar 

  8. Dwinger, Ph.: Introduction to Boolean algebras. Hamburger Mathematische Einzelschriften, Heft 40, Physica-Verlag, Würzburg (1961)

  9. Engelking, R.: General Topology, 2nd edn. Heldermann Verlag, Berlin (1989)

    MATH  Google Scholar 

  10. Hansoul, G.: The Stone-Čech compactification of a pospace. Lectures in universal algebra (Szeged, 1983), Colloq. Math. Soc. János Bolyai, vol. 43, pp. 161–176. North-Holland, Amsterdam (1986)

    Google Scholar 

  11. Magill, K.D. Jr., Glasenapp, J.A.: 0-dimensional compactifications and Boolean rings. J. Aust. Math. Soc. 8, 755–765 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. McCallion, T.: Compactifications of ordered topological spaces. Proc. Camb. Philos. Soc. 71, 463–473 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. McCartan, S.D.: Separation axioms for topological ordered spaces. Proc. Camb. Philos. Soc. 64, 965–973 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nachbin, L.: Topology and Order. D. Van Nostrand Co., Inc., Princeton, NJ (1965)

    MATH  Google Scholar 

  15. Nailana, K.R.: (Strongly) zero-dimensional partially ordered spaces. Papers in honour of Bernhard Banaschewski (Cape Town, 1996), pp. 445–456. Kluwer, Dordrecht (2000)

    Google Scholar 

  16. Priestley, H.A.: Representation of distributive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2, 186–190 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Priestley, H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. 24(3), 507–530 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  18. Salbany, S., Todorov, T.: Nonstandard and standard compactifications of ordered topological spaces. Topol. its Appl. 47(1), 35–52 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stone, M.H.: The theory of representations for Boolean algebras. Trans. Am. Math. Soc. 40(1), 37–111 (1936)

    Google Scholar 

  20. Stone, M.H.: Topological representation of distributive lattices and Brouwerian logics. Časopis Pešt. Mat. Fys. 67, 1–25 (1937)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Morandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezhanishvili, G., Morandi, P.J. Priestley Rings and Priestley Order-Compactifications. Order 28, 399–413 (2011). https://doi.org/10.1007/s11083-010-9180-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-010-9180-2

Keywords

Mathematics Subject Classifications (2010)

Navigation