Skip to main content
Log in

Canonical Extensions and Profinite Completions of Semilattices and Lattices

  • Published:
Order Aims and scope Submit manuscript

Abstract

Canonical extensions of (bounded) lattices have been extensively studied, and the basic existence and uniqueness theorems for these have been extended to general posets. This paper focuses on the intermediate class \({{\boldsymbol{\mathcal{S}}}}_{\wedge}\) of (unital) meet semilattices. Any \({\mathbf S}\in {{\boldsymbol{\mathcal{S}}}}_{\wedge}\) embeds into the algebraic closure system Filt(Filt(S)). This iterated filter completion, denoted Filt2(S), is a compact and \({\textstyle{\bigvee}\,}{\textstyle{\bigwedge}\,}\)-dense extension of S. The complete meet-subsemilattice S δ of Filt2(S) consisting of those elements which satisfy the condition of \({\textstyle{\bigwedge}\,}{\textstyle{\bigvee}\,}\)-density is shown to provide a realisation of the canonical extension of S. The easy validation of the construction is independent of the theory of Galois connections. Canonical extensions of bounded lattices are brought within this framework by considering semilattice reducts. Any S in \({{\boldsymbol{\mathcal{S}}}}_{\wedge}\) has a profinite completion, \({\rm Pro}_{{{\boldsymbol{\mathcal{S}}}}_{\wedge}}({\mathbf S})\). Via the duality theory available for semilattices, \({\rm Pro}_{{{\boldsymbol{\mathcal{S}}}}_{\wedge}}({\mathbf S})\) can be identified with Filt2(S), or, if an abstract approach is adopted, with \({\mathbb F_{\sqcup}}({\mathbb F_{\sqcap}}({\mathbf S}))\), the free join completion of the free meet completion of S. Lifting of semilattice morphisms can be considered in any of these settings. This leads, inter alia, to a very transparent proof that a homomorphism between bounded lattices lifts to a complete lattice homomorphism between the canonical extensions. Finally, we demonstrate, with examples, that the profinite completion of S, for \({\mathbf S} \in {{\boldsymbol{\mathcal{S}}}}_{\wedge}\), need not be a canonical extension. This contrasts with the situation for the variety of bounded distributive lattices, within which profinite completion and canonical extension coincide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bezhanishvili, G., Gehrke, M., Mines, R., Morandi, P.J.: Profinite completions and canonical extensions of Heyting algebras. Order 23, 143–161 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Busaniche, M., Cabrer, L.M.: Canonicity in subvarieties of BL-algebras. Algebra Univ. 62, 375–397 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Clark, D.M., Davey, B.A.: Natural Dualities for the Working Algebraist. Cambridge University Press (1998)

  4. Davey, B.A., Gouveia, M.J., Haviar, M., Priestley, H.A.: Natural extensions and profinite completions of algebras. Algebra Univ. 66, 205–241 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press (2002)

  6. Dunn, J.M., Gehrke, M., Palmigiano, A.: Canonical extensions and relational completeness of some substructural logics. J. Symbolic Logic 70, 713–740 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Erné, M.: Adjunctions and Galois connections: origins, history and development. In: Deneke, K., Erné, M., Wismath, S.L. (eds.) Galois Connections and Applications, Mathematics and its Applications, vol. 565, pp. 1–138. Kluwer Academic Publishers (2004)

  8. Gehrke, M.: Canonical extensions, Esakia spaces, and universal models. In: Bezhanishvili, G. (ed.) Leo Esakia on duality in modal and intuitionistic logics. Trends in Logic (Outstanding Contributions subseries), volume dedicated to the achievements of Leo Esakia. Available online (preprint), see http://www.liafa.univ-paris-diderot.fr/~mgehrke/Ge12.pdf. Accessed 14 June 2013

  9. Gehrke, M., Harding, J.: Bounded lattice expansions. J. Algebra 55, 345–371 (2001)

    Article  MathSciNet  Google Scholar 

  10. Gehrke, M., Jansana, R., Palmigiano, A.: Δ1-completions of a poset. Order 30(1), 39–64 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators. Math. Japonica 40, 207–215 (1994)

    MATH  Google Scholar 

  12. Gehrke, M., Priestley, H.A.: Canonical extensions and completions of posets and lattices. Rep. Math. Logic 43, 133–152 (2008)

    MATH  MathSciNet  Google Scholar 

  13. Gehrke, M., Vosmaer, J.: A view of canonical extensions. In: Bezhanishvili, N., Löbner, S., Schwabe, K., Spada, L. (eds.) Logic, Language and Computation (Proceedings of the Eighth International Tbilisi Symposium TbiLLC09, Lecture Notes in Artificial Intelligence). Lecture Notes in Comput. Sci. 6618, 77–100 (2011)

  14. Gierz, G., Hofmann, K., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: A Compendium of Continuous Lattices. Springer-Verlag (1980)

  15. Gouveia, M., Priestley, H.A.: Canonical extensions of distributive lattices and the profinite completions of their semilattice reducts. Houston J. Math. Available online (preprint), see http://webpages.fc.ul.pt/~mjgouveia/s2.pdf. Accessed 14 June 2013

  16. Harding, J.: Canonical completions of lattices and ortholattices. Tatra Mt. Math. Publ. 15, 85–96 (1998)

    MATH  MathSciNet  Google Scholar 

  17. Harding, J.: On profinite completions and canonical extensions. Algebra Univ. 55, 293–296 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hofmann, K.H., Mislove, M., Stralka, A.R.: The Pontryagin duality of compact 0-dimensional semilattices and its applications. Lecture Notes in Mathematics, vol. 396. Springer-Verlag (1974)

  19. Moshier, M.A., Jipsen, P.: Topological duality and lattice expansions, Part I: a topological construction of canonical extensions. Algebra Univ. Available online (preprint), see http://math.chapman.edu/~jipsen/preprints/JipsenMoshier20120412Part1.pdf. Accessed 14 June 2013

  20. Urquhart, A.: A topological representation theory for lattices. Algebra Univ. 8, 45–58 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  21. Walker, R.C.: The Stone–Čech Compactification. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83, Springer-Verlag (1974)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Gouveia.

Additional information

M. J. Gouveia acknowledges support from Portuguese Project PEst-OE/MAT/UI0143/2011 of CAUL financed by FCT and FEDER.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouveia, M.J., Priestley, H.A. Canonical Extensions and Profinite Completions of Semilattices and Lattices. Order 31, 189–216 (2014). https://doi.org/10.1007/s11083-013-9296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-013-9296-2

Keywords

Mathematics Subject Classifications (2010)

Navigation