Abstract
Motivated by work of Erdős, Milner and Rado, we investigate symmetric and asymmetric partition relations for linear orders without the axiom of choice. The relations state the existence of a subset in one of finitely many given order types that is homogeneous for a given colouring of the finite subsets of a fixed size of a linear order. We mainly study the linear orders 〈α2,< l e x 〉, where α is an infinite ordinal and < l e x is the lexicographical order. We first obtain the consistency of several partition relations that are incompatible with the axiom of choice. For instance we derive partition relations for 〈ω2,< l e x 〉 from the property of Baire for all subsets of ω2 and show that the relation \(\langle ^{\kappa }{2}, <_{lex}\rangle \longrightarrow (\langle ^{\kappa }{2}, <_{lex}\rangle )^{2}_{2}\) is consistent for uncountable regular cardinals κ with κ <κ = κ. We then prove a series of negative partition relations with finite exponents for the linear orders 〈α2,< l e x 〉. We combine the positive and negative results to completely classify which of the partition relations \(\langle ^{\omega }{2}, <_{lex}\rangle \longrightarrow (\bigvee _{\nu <\lambda }K_{\nu },\bigvee _{\nu <\mu }M_{\nu })^{m}\) for linear orders K ν ,M ν and m≤4 and 〈ω2,< l e x 〉→(K,M)n for linear orders K,M and natural numbers n are consistent.
Similar content being viewed by others
References
Schlicht, P: Perfect subsets of generalized Baire spaces and long games. Submitted, 22 pages. http://www.math.uni-bonn.de/people/schlicht/Perfect (2016)
Stanley, R. P.: Catalan Numbers. Cambridge Univ Press, Cambridge (2015)
Lücke, P.M., Motto Ros, L., Schlicht, P.: The Hurewicz dichotomy for generalized Baire spaces. To appear in the Israel Journal of Mathematics (2014)
Weinert, T. V.: Idiosynchromatic poetry. Combinatorica 34(6), 707–742 (2014). doi:doi:http://dx.doi.org/10.1007/s00493-011-2980-1 10.1007/s00493-011-2980-1 [http://math.huji.ac.il/weinert/Poetry.pdf]
Weinert, T. V.: A Potpourri of Partition Properties. PhD thesis, http://hss.ulb.uni-bonn.de/2014/3702/3702.pdf (2014)
Lücke, P.M.: \({{\Sigma }^{1}_{1}}\)-definability at uncountable regular cardinals. J. Symb. Logic 77(3), 1011–1046 (2012). doi:10.2178/jsl/1344862172
Caicedo, A.E., Ketchersid, R.O.: A trichotomy theorem in natural models of AD +. In: Set Theory and its Applications, Volume 533 of Contemp. Math., pp 227–258. Amer. Math. Soc., Providence (2011), 10.1090/conm/533/10510
Cummings, J.W.R.: Iterated forcing and elementary embeddings. In: Handbook of Set Theory, vol. 1, 2, 3, pp 775–883. Springer, Dordrecht (2010), 10.1007/978-1-4020-5764-9_13
Hajnal, A., Larson, J. A.: Handbook of set theory. Vol. 1, chapter Partition Relations, pages Vol. 1: xiv+736 pp. Springer, Dordrecht (2010). http://www.math.rutgers.edu/
Moore, M.J, Soltis, P.S, Bell, C.D, Gordon B.J, Soltis, D.E: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc. Nat. Acad. Sci. 107(10), 4623–4628 (2010)
Schipperus, R.: Countable partition ordinals. Ann. Pure Appl. Logic 161(10), 1195–1215 (2010). doi:10.1016/j.apal.2009.12.007
Steel, J. R.: An outline of inner model theory. In: Handbook of Set Theory, vol. 1, 2, 3, pp 1595–1684. Springer, Dordrecht (2010), 10.1007/978-1-4020-5764-9_20
Bremer, B., Bremer, K., Chase, M., Fay, M., Reveal, J., Soltis, D. E., Soltis, P.S., Stevens, P.: An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: Apg iii. Botanical Journal of the Linnean Society (2009)
Jones, A. L.: Partitioning triples and partially ordered sets. Proc. Amer. Math. Soc. 136(5), 1823–1830 (2008). doi:10.1090/S0002-9939-07-09170-8
Kechris, A. S., Woodin, W. H.: The equivalence of partition properties and determinacy. In: Games, Scales, and Suslin Cardinals. The Cabal Seminar. Vol. I, Volume 31 of Lect. Notes Log., pp 355–378. Assoc. Symbol. Logic, Chicago (2008), 10.1017/CBO9780511546488.018
Delhommé, C., Laflamme, C., Pouzet, M.A., Sauer, N.W.: Divisibility of countable metric spaces. European J. Combin. 28(6), 1746–1769 (2007). doi:10.1016/j.ejc.2006.06.024
Altmann, S., Ortiz, E.L. (eds.): Mathematics and Social Utopias in France, Volume 28 of History of Mathematics, American Mathematical Society, Providence, RI; London Mathematical Society, London. Olinde Rodrigues and his times (2005)
Jackson, S.C., May, R.: The strong partition relation on ω 1 revisited. MLQ Math. Log. Q. 50(1), 33–40 (2004). doi:10.1002/malq.200310073
Di Prisco De Venanzi, C.A., Todorcevic, S.: Souslin partitions of products of finite sets. Adv. Math. 176(1), 145–173 (2003). doi:10.1016/S0001-8708(02)00064-6
Kanamori, A.: The Higher Infinite. Springer Monographs in Mathematics, 2nd edn. Springer-Verlag, Berlin (2003). Large cardinals in set theory from their beginnings
Neeman, I., Zapletal, J.: Proper forcing and L(ℝ). J. Symb. Logic 66(2), 801–810 (2001). doi:10.2307/2695045
Hamkins, J.D., Woodin, W.H.: Small forcing creates neither strong nor Woodin cardinals. Proc. Amer. Math. Soc. 128(10), 3025–3029 (2000). doi:10.1090/S0002-9939-00-05347-8
Komjáth, P.: Some remarks on the partition calculus of ordinals. J. Symb. Logic 64(2), 436–442 (1999). doi:10.2307/2586476
Stanley, R. P.: Enumerative Combinatorics. Vol. 2, Volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999). With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin
Larcombe, P.J., Wilson, P. D. C.: On the trail of the Catalan sequence. Math. Today (Southend-on-Sea) 34(4), 114–117 (1998)
Conway, J.H., Guy, R.K.: The Book of Numbers. Copernicus, New York (1996)
Baumgartner, J.E., Hajnal, A., Todorċević, S.: Extensions of the Erdős-Rado theorem. In: Finite and Infinite Combinatorics in Sets and Logic (Banff, AB, 1991), Volume 411 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp 1–17. Kluwer Acad. Publ., Dordrecht (1993)
Hilton, P.J., Pedersen, J.: Catalan numbers, their generalization, and their uses. Math. Intelligencer 13(2), 64–75 (1991). doi:10.1007/BF03024089
Jackson, S.C.: A new proof of the strong partition relation on ω 1. Trans. Amer. Math. Soc. 320(2), 737–745 (1990). doi:10.2307/2001700
Martin, D. A., Steel, J. R.: Projective determinacy. Proc. Nat. Acad. Sci. U.S.A. 85(18), 6582–6586 (1988). doi:10.1073/pnas.85.18.6582
Milner, E.C., Prikry, K. L.: A partition theorem for triples. Proc. Amer. Math. Soc. 97(3), 488–494 (1986). doi:10.2307/2046243
Shelah, S.: Can you take Solovay’s inaccessible away? Israel J. Math. 48(1), 1–47 (1984). doi:10.1007/BF02760522
Kechris, A. S., Woodin, W. H.: Equivalence of partition properties and determinacy. Proc. Nat. Acad. Sci. U.S.A. 80(6 i.), 1783–1786 (1983)
Blass, A. R.: A partition theorem for perfect sets. Proc. Amer. Math. Soc. 82 (2), 271–277 (1981). doi:10.2307/2043323
Kechris, A.S., Kleinberg, E. M., Moschovakis, Y.N., Woodin, William Hugh: The axiom of determinacy, strong partition properties and nonsingular measures. In: Cabal Seminar 77–79 (Proc. Caltech-UCLA Logic Sem., 1977–79), Volume 839 of Lecture Notes in Math., pp 75–99. Springer, Berlin (1981), 10.1007/BFb0090236
Gitik, M.: All uncountable cardinals can be singular. Israel J. Math. 35(1-2), 61–88 (1980). doi:10.1007/BF02760939
Nosal, E.: Partition relations for denumerable ordinals. J. Combin. Theory Ser. B 27(2), 190–197 (1979). doi:10.1016/0095-8956(79)90080-7
Mathias, A. R.D.: Happy families. Ann. Math. Logic 12(1), 59–111 (1977)
Prikry, K. L.: Determinateness and partitions. Proc. Amer. Math. Soc. 54, 303–306 (1976) [http://www.jstor.org/stable/2040805]
Larson, J. A.: A short proof of a partition theorem for the ordinal ω ω. Ann. Math. Logic 6, 129–145 (1973)
Erdős, P., Milner, E.C.: A theorem in the partition calculus. Canad. Math. Bull. 15, 501–505 (1972) [http://www.renyi.hu/p_erdos/1972-03.pdf]
Erdős, P., Milner, E.C., Rado, R.: Partition relations for η α -sets. J. London Math. Soc. (2) 3, 193–204 (1971) [http://www.renyi.hu/p_erdos/1971-16. pdf]
Galvin, F.: A letter addressed to Paul Erdȯs dated Monday, 12th October (1970)
Kleinberg, E. M.: Strong partition properties for infinite cardinals. J. Symb. Logic 35, 410–428 (1970)
Moschovakis, Y.N.: Determinacy and prewellorderings of the continuum. In: Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp 24–62. North-Holland, Amsterdam (1970)
Baron, M. E.: A note on the historical development of logic diagrams. Math. Gaz. 53(384), 113–1125 (1969)
Mycielski, J.: Algebraic independence and measure. Fund. Math. 61, 165–169 (1967)
Halpern, J.D., Läuchli, H.: A partition theorem. Trans. Amer. Math. Soc. 124, 360–367 (1966)
Kruse, A. H.: A note on the partition calculus of P. Erdős and R. Rado. J. London Math. Soc. 40, 137–148 (1965) [http://jlms.oxfordjournals.org/content/s1-40/ 1/137.full.pdf]
Erdős, P., Hajnal, A.: On a classification of denumerable order types and an application to the partition calculus. Fund. Math. 51, 117–129 (1962/1963) [http://www.renyi.hu/p_erdos/1962-06.pdf]
Hausdorff, F.: Set theory. Translated from the German by John R. Aumann et al, 2nd edn. Chelsea Publishing Co., New York (1962)
Erdős, P., Rado, R.: A partition calculus in set theory. Bull. Amer. Math. Soc. 62, 427–489 (1956) [http://www.ams.org/journals/bull/1956-62-05/ S0002-9904-1956-10036-0/S0002-9904-1956-10036-0.pdf]
Felix, H.: Grundzüge der Mengenlehre. Chelsea Publishing Company, New York (1949)
Sierpiński, W. F.: Sur un problème de la théorie des relations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 2(3), 285–287 (1933) [http://www.numdam.org/item?id= ASNSP_1933_2_2_3_285_0]
Hausdorff, F.: Grundzüge der Mengenlehre. Veit and Company, Leipzig (1914). https://archive.org/details/grundzgedermen00hausuoft
Bernstein, F.: Zur Theorie der trigonometrischen Reihen. Ber. Ver. Kö. Sä. Ges. Wiss. Lei. 60, 325–338 (1908)
Hessenberg, G.: Grundbegriffe der Mengenlehre, vol. 1. Vandenhoek & Ruprecht, Göttingen (1906). http://reader.digitale-sammlungen.de/de/fs1/object/display/bsb11171763_00002.html
Author information
Authors and Affiliations
Corresponding author
Additional information
The first and the second author were partially supported by DFG-grant LU2020/1-1 during the revision of this paper.
The last author was partially supported by the DFG grant GE 2176/1-1 and the European Research Council grant 338821 during the writing of this paper.
Rights and permissions
About this article
Cite this article
Lücke, P., Schlicht, P. & Weinert, T. Choiceless Ramsey Theory of Linear Orders. Order 34, 369–418 (2017). https://doi.org/10.1007/s11083-016-9405-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-016-9405-0