Skip to main content
Log in

Choiceless Ramsey Theory of Linear Orders

  • Published:
Order Aims and scope Submit manuscript

Abstract

Motivated by work of Erdős, Milner and Rado, we investigate symmetric and asymmetric partition relations for linear orders without the axiom of choice. The relations state the existence of a subset in one of finitely many given order types that is homogeneous for a given colouring of the finite subsets of a fixed size of a linear order. We mainly study the linear orders 〈α2,< l e x 〉, where α is an infinite ordinal and < l e x is the lexicographical order. We first obtain the consistency of several partition relations that are incompatible with the axiom of choice. For instance we derive partition relations for 〈ω2,< l e x 〉 from the property of Baire for all subsets of ω2 and show that the relation \(\langle ^{\kappa }{2}, <_{lex}\rangle \longrightarrow (\langle ^{\kappa }{2}, <_{lex}\rangle )^{2}_{2}\) is consistent for uncountable regular cardinals κ with κ <κ = κ. We then prove a series of negative partition relations with finite exponents for the linear orders 〈α2,< l e x 〉. We combine the positive and negative results to completely classify which of the partition relations \(\langle ^{\omega }{2}, <_{lex}\rangle \longrightarrow (\bigvee _{\nu <\lambda }K_{\nu },\bigvee _{\nu <\mu }M_{\nu })^{m}\) for linear orders K ν ,M ν and m≤4 and 〈ω2,< l e x 〉→(K,M)n for linear orders K,M and natural numbers n are consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schlicht, P: Perfect subsets of generalized Baire spaces and long games. Submitted, 22 pages. http://www.math.uni-bonn.de/people/schlicht/Perfect (2016)

  2. Stanley, R. P.: Catalan Numbers. Cambridge Univ Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  3. Lücke, P.M., Motto Ros, L., Schlicht, P.: The Hurewicz dichotomy for generalized Baire spaces. To appear in the Israel Journal of Mathematics (2014)

  4. Weinert, T. V.: Idiosynchromatic poetry. Combinatorica 34(6), 707–742 (2014). doi:doi:http://dx.doi.org/10.1007/s00493-011-2980-1 10.1007/s00493-011-2980-1 [http://math.huji.ac.il/weinert/Poetry.pdf]

    Article  MATH  MathSciNet  Google Scholar 

  5. Weinert, T. V.: A Potpourri of Partition Properties. PhD thesis, http://hss.ulb.uni-bonn.de/2014/3702/3702.pdf (2014)

  6. Lücke, P.M.: \({{\Sigma }^{1}_{1}}\)-definability at uncountable regular cardinals. J. Symb. Logic 77(3), 1011–1046 (2012). doi:10.2178/jsl/1344862172

  7. Caicedo, A.E., Ketchersid, R.O.: A trichotomy theorem in natural models of AD +. In: Set Theory and its Applications, Volume 533 of Contemp. Math., pp 227–258. Amer. Math. Soc., Providence (2011), 10.1090/conm/533/10510

  8. Cummings, J.W.R.: Iterated forcing and elementary embeddings. In: Handbook of Set Theory, vol. 1, 2, 3, pp 775–883. Springer, Dordrecht (2010), 10.1007/978-1-4020-5764-9_13

  9. Hajnal, A., Larson, J. A.: Handbook of set theory. Vol. 1, chapter Partition Relations, pages Vol. 1: xiv+736 pp. Springer, Dordrecht (2010). http://www.math.rutgers.edu/

    Google Scholar 

  10. Moore, M.J, Soltis, P.S, Bell, C.D, Gordon B.J, Soltis, D.E: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc. Nat. Acad. Sci. 107(10), 4623–4628 (2010)

    Article  Google Scholar 

  11. Schipperus, R.: Countable partition ordinals. Ann. Pure Appl. Logic 161(10), 1195–1215 (2010). doi:10.1016/j.apal.2009.12.007

    Article  MATH  MathSciNet  Google Scholar 

  12. Steel, J. R.: An outline of inner model theory. In: Handbook of Set Theory, vol. 1, 2, 3, pp 1595–1684. Springer, Dordrecht (2010), 10.1007/978-1-4020-5764-9_20

  13. Bremer, B., Bremer, K., Chase, M., Fay, M., Reveal, J., Soltis, D. E., Soltis, P.S., Stevens, P.: An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: Apg iii. Botanical Journal of the Linnean Society (2009)

  14. Jones, A. L.: Partitioning triples and partially ordered sets. Proc. Amer. Math. Soc. 136(5), 1823–1830 (2008). doi:10.1090/S0002-9939-07-09170-8

    Article  MATH  MathSciNet  Google Scholar 

  15. Kechris, A. S., Woodin, W. H.: The equivalence of partition properties and determinacy. In: Games, Scales, and Suslin Cardinals. The Cabal Seminar. Vol. I, Volume 31 of Lect. Notes Log., pp 355–378. Assoc. Symbol. Logic, Chicago (2008), 10.1017/CBO9780511546488.018

  16. Delhommé, C., Laflamme, C., Pouzet, M.A., Sauer, N.W.: Divisibility of countable metric spaces. European J. Combin. 28(6), 1746–1769 (2007). doi:10.1016/j.ejc.2006.06.024

    Article  MATH  MathSciNet  Google Scholar 

  17. Altmann, S., Ortiz, E.L. (eds.): Mathematics and Social Utopias in France, Volume 28 of History of Mathematics, American Mathematical Society, Providence, RI; London Mathematical Society, London. Olinde Rodrigues and his times (2005)

  18. Jackson, S.C., May, R.: The strong partition relation on ω 1 revisited. MLQ Math. Log. Q. 50(1), 33–40 (2004). doi:10.1002/malq.200310073

    Article  MATH  MathSciNet  Google Scholar 

  19. Di Prisco De Venanzi, C.A., Todorcevic, S.: Souslin partitions of products of finite sets. Adv. Math. 176(1), 145–173 (2003). doi:10.1016/S0001-8708(02)00064-6

    Article  MATH  MathSciNet  Google Scholar 

  20. Kanamori, A.: The Higher Infinite. Springer Monographs in Mathematics, 2nd edn. Springer-Verlag, Berlin (2003). Large cardinals in set theory from their beginnings

    Google Scholar 

  21. Neeman, I., Zapletal, J.: Proper forcing and L(). J. Symb. Logic 66(2), 801–810 (2001). doi:10.2307/2695045

    Article  MATH  Google Scholar 

  22. Hamkins, J.D., Woodin, W.H.: Small forcing creates neither strong nor Woodin cardinals. Proc. Amer. Math. Soc. 128(10), 3025–3029 (2000). doi:10.1090/S0002-9939-00-05347-8

    Article  MATH  MathSciNet  Google Scholar 

  23. Komjáth, P.: Some remarks on the partition calculus of ordinals. J. Symb. Logic 64(2), 436–442 (1999). doi:10.2307/2586476

    Article  MATH  MathSciNet  Google Scholar 

  24. Stanley, R. P.: Enumerative Combinatorics. Vol. 2, Volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999). With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin

    Book  Google Scholar 

  25. Larcombe, P.J., Wilson, P. D. C.: On the trail of the Catalan sequence. Math. Today (Southend-on-Sea) 34(4), 114–117 (1998)

    MATH  MathSciNet  Google Scholar 

  26. Conway, J.H., Guy, R.K.: The Book of Numbers. Copernicus, New York (1996)

    Book  MATH  Google Scholar 

  27. Baumgartner, J.E., Hajnal, A., Todorċević, S.: Extensions of the Erdős-Rado theorem. In: Finite and Infinite Combinatorics in Sets and Logic (Banff, AB, 1991), Volume 411 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp 1–17. Kluwer Acad. Publ., Dordrecht (1993)

  28. Hilton, P.J., Pedersen, J.: Catalan numbers, their generalization, and their uses. Math. Intelligencer 13(2), 64–75 (1991). doi:10.1007/BF03024089

    Article  MATH  MathSciNet  Google Scholar 

  29. Jackson, S.C.: A new proof of the strong partition relation on ω 1. Trans. Amer. Math. Soc. 320(2), 737–745 (1990). doi:10.2307/2001700

    MATH  MathSciNet  Google Scholar 

  30. Martin, D. A., Steel, J. R.: Projective determinacy. Proc. Nat. Acad. Sci. U.S.A. 85(18), 6582–6586 (1988). doi:10.1073/pnas.85.18.6582

    Article  MATH  MathSciNet  Google Scholar 

  31. Milner, E.C., Prikry, K. L.: A partition theorem for triples. Proc. Amer. Math. Soc. 97(3), 488–494 (1986). doi:10.2307/2046243

    Article  MATH  MathSciNet  Google Scholar 

  32. Shelah, S.: Can you take Solovay’s inaccessible away? Israel J. Math. 48(1), 1–47 (1984). doi:10.1007/BF02760522

    Article  MATH  MathSciNet  Google Scholar 

  33. Kechris, A. S., Woodin, W. H.: Equivalence of partition properties and determinacy. Proc. Nat. Acad. Sci. U.S.A. 80(6 i.), 1783–1786 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  34. Blass, A. R.: A partition theorem for perfect sets. Proc. Amer. Math. Soc. 82 (2), 271–277 (1981). doi:10.2307/2043323

    Article  MATH  MathSciNet  Google Scholar 

  35. Kechris, A.S., Kleinberg, E. M., Moschovakis, Y.N., Woodin, William Hugh: The axiom of determinacy, strong partition properties and nonsingular measures. In: Cabal Seminar 77–79 (Proc. Caltech-UCLA Logic Sem., 1977–79), Volume 839 of Lecture Notes in Math., pp 75–99. Springer, Berlin (1981), 10.1007/BFb0090236

  36. Gitik, M.: All uncountable cardinals can be singular. Israel J. Math. 35(1-2), 61–88 (1980). doi:10.1007/BF02760939

    Article  MATH  MathSciNet  Google Scholar 

  37. Nosal, E.: Partition relations for denumerable ordinals. J. Combin. Theory Ser. B 27(2), 190–197 (1979). doi:10.1016/0095-8956(79)90080-7

    Article  MATH  MathSciNet  Google Scholar 

  38. Mathias, A. R.D.: Happy families. Ann. Math. Logic 12(1), 59–111 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  39. Prikry, K. L.: Determinateness and partitions. Proc. Amer. Math. Soc. 54, 303–306 (1976) [http://www.jstor.org/stable/2040805]

    Article  MATH  MathSciNet  Google Scholar 

  40. Larson, J. A.: A short proof of a partition theorem for the ordinal ω ω. Ann. Math. Logic 6, 129–145 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  41. Erdős, P., Milner, E.C.: A theorem in the partition calculus. Canad. Math. Bull. 15, 501–505 (1972) [http://www.renyi.hu/p_erdos/1972-03.pdf]

    Article  MathSciNet  Google Scholar 

  42. Erdős, P., Milner, E.C., Rado, R.: Partition relations for η α -sets. J. London Math. Soc. (2) 3, 193–204 (1971) [http://www.renyi.hu/p_erdos/1971-16. pdf]

    Article  MathSciNet  Google Scholar 

  43. Galvin, F.: A letter addressed to Paul Erdȯs dated Monday, 12th October (1970)

  44. Kleinberg, E. M.: Strong partition properties for infinite cardinals. J. Symb. Logic 35, 410–428 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  45. Moschovakis, Y.N.: Determinacy and prewellorderings of the continuum. In: Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968), pp 24–62. North-Holland, Amsterdam (1970)

  46. Baron, M. E.: A note on the historical development of logic diagrams. Math. Gaz. 53(384), 113–1125 (1969)

    Article  MATH  Google Scholar 

  47. Mycielski, J.: Algebraic independence and measure. Fund. Math. 61, 165–169 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  48. Halpern, J.D., Läuchli, H.: A partition theorem. Trans. Amer. Math. Soc. 124, 360–367 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  49. Kruse, A. H.: A note on the partition calculus of P. Erdős and R. Rado. J. London Math. Soc. 40, 137–148 (1965) [http://jlms.oxfordjournals.org/content/s1-40/ 1/137.full.pdf]

    Article  MATH  MathSciNet  Google Scholar 

  50. Erdős, P., Hajnal, A.: On a classification of denumerable order types and an application to the partition calculus. Fund. Math. 51, 117–129 (1962/1963) [http://www.renyi.hu/p_erdos/1962-06.pdf]

  51. Hausdorff, F.: Set theory. Translated from the German by John R. Aumann et al, 2nd edn. Chelsea Publishing Co., New York (1962)

    MATH  Google Scholar 

  52. Erdős, P., Rado, R.: A partition calculus in set theory. Bull. Amer. Math. Soc. 62, 427–489 (1956) [http://www.ams.org/journals/bull/1956-62-05/ S0002-9904-1956-10036-0/S0002-9904-1956-10036-0.pdf]

    Article  MATH  MathSciNet  Google Scholar 

  53. Felix, H.: Grundzüge der Mengenlehre. Chelsea Publishing Company, New York (1949)

    Google Scholar 

  54. Sierpiński, W. F.: Sur un problème de la théorie des relations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 2(3), 285–287 (1933) [http://www.numdam.org/item?id= ASNSP_1933_2_2_3_285_0]

    MATH  MathSciNet  Google Scholar 

  55. Hausdorff, F.: Grundzüge der Mengenlehre. Veit and Company, Leipzig (1914). https://archive.org/details/grundzgedermen00hausuoft

    MATH  Google Scholar 

  56. Bernstein, F.: Zur Theorie der trigonometrischen Reihen. Ber. Ver. Kö. Sä. Ges. Wiss. Lei. 60, 325–338 (1908)

    Google Scholar 

  57. Hessenberg, G.: Grundbegriffe der Mengenlehre, vol. 1. Vandenhoek & Ruprecht, Göttingen (1906). http://reader.digitale-sammlungen.de/de/fs1/object/display/bsb11171763_00002.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Weinert.

Additional information

The first and the second author were partially supported by DFG-grant LU2020/1-1 during the revision of this paper.

The last author was partially supported by the DFG grant GE 2176/1-1 and the European Research Council grant 338821 during the writing of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lücke, P., Schlicht, P. & Weinert, T. Choiceless Ramsey Theory of Linear Orders. Order 34, 369–418 (2017). https://doi.org/10.1007/s11083-016-9405-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-016-9405-0

Keywords