Skip to main content
Log in

Predicting the performance of reconfigurable optical interconnects in distributed shared-memory systems

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

New advances in reconfigurable optical interconnect technologies will allow the fabrication of low-cost, fast and run-time adaptable networks for connecting processors and memory modules in large distributed shared-memory multiprocessor machines. Since the switching times of these components are typically high compared to the memory access time, reconfiguration exploits low frequency dynamics in the network traffic patterns. These are however not easily reproduced using statistical traffic generation, a tool commonly used when doing a fast design space exploration. In this paper, we present a technique that can predict network performance, based on the traffic patterns obtained from simulating the execution of real benchmark applications, but without the need to perform these slow full-system simulations for every parameter set of interest. This again allows for a quick comparison of different network implementations with good relative accuracy, narrowing down the design space for more detailed examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller D.A.B. and Ozaktas H.M. (1997). Limit to the bit-rate capacity of electrical interconnects from the aspect ratio of the system architecture. J. Parallel Distributed Comput. 41(1): 42–52

    Article  Google Scholar 

  2. Lenoski D., Laudon J., Gharachorloo K., Weber W.-D., Gupta A., Hennessy J.L., Horowitz M. and Lam M.S. (1992). The Stanford DASH multiprocessor. IEEE Comput. 25(3): 63–79

    Google Scholar 

  3. Collet J., Litaize D., Campenhout J.V., Desmulliez M., Jesshope C., Thienpont H., Goodman J. and Louri A. (2000). Architectural approach to the role of optics in monoprocessor and multiprocessor machines. Appl. Opt. 39(5): 671–682

    Article  Google Scholar 

  4. Benner A.F., Ignatowski M., Kash J.A., Kuchta D.M. and Ritter M.B. (2005). Exploitation of optical interconnects in future server architectures. IBM J. Res. Dev. 49(4/5): 755–776

    Article  Google Scholar 

  5. Mohammed E. (2004). Optical interconnect system integration for ultra-short-reach applications. Intel Technol. J. 8(2): 115–127

    Google Scholar 

  6. Schares, L., et al.: Terabus—a waveguide-based parallel optica interconnect for Tb/s-class on-board data transfers in computer systems. In: Proceedings of the 31st European Conference on Optical Communication (ECOC 2005), vol. 3, pp. 369–372. The Institution of Electrical Engineers, Glasgow, Scotland (2005)

  7. Heirman, W., Artundo, I., Desmet, L., Dambre, J., Debaes, C., Thienpont, H., Van Campenhout, J.: Speeding up multiprocessor machines with reconfigurable optical interconnects. In: Eldada, L., Lee, E.-H. (eds.) Proceedings of SPIE, Optoelectronic Integrated Circuits VIII, Photonics West, vol. 6124, p. 61240K. SPIE, San Jose, California, USA (2006)

  8. Katsinis C. (2001). Performance analysis of the simultaneous optical multi-processor exchange bus. Parallel Comput. 27(8): 1079–1115

    Article  MATH  Google Scholar 

  9. Heirman, W., Dambre, J., Van Campenhout, J.,Debaes, C., Thienpont, H.: Traffic temporal analysis for reconfigurable interconnects in shared-memory systems. In: Proceedings of the 19th IEEE International Parallel & Distributed Processing Symposium, IEEE Computer Society, p. 150. Denver, Colorado (2005)

  10. Magnusson P.S., Christensson M., Eskilson J., Forsgren D., Hallberg G., Hogberg J., Larsson F., Moestedt A. and Werner B. (2002). Simics: A full system simulation platform. IEEE Comput. 35(2): 50–58

    Google Scholar 

  11. Ridruejo, F., Gonzalez, A., Miguel-Alonso, J.: TrGen: a traffic generation system for interconnection network simulators. In: 1st. Int. Workshop on Performance Evaluation of Networks for Parallel, Cluster and Grid Computing Systems (PEN-PCGCS’05), pp. 547–553. Olso, Norway (2005)

  12. Brunfaut, M., Meeus, W., Van Campenhout, J., Annen, R., Zenklusen, P., Melchior, H., Bockstaele, R., Vanwassenhove, L., Hall, J., Wittman, B., Nayer, A., Heremans, P., Van Koetsem, J., King, R., Thienpont, H., Baets, R.: Demonstrating optoelectronic interconnect in a FPGA based prototype system using flip chip mounted 2D arrays of optical components and 2D POF-ribbon arrays as optical pathways. In: Proceedings of SPIE, vol. 4455, pp. 160–171. Bellingham (2001).

  13. Huang D., Sze T., Landin A., Lytel R. and Davidson H. (2003). Optical interconnects: out of the box forever?. IEEE J. Select. Top. Quant. Electron. 9(2): 614–623

    Article  Google Scholar 

  14. Snyder L. (1982). Introduction to the configurable, highly parallel computer. Computer 15(1): 47–56

    Article  Google Scholar 

  15. Pinkston T.M. and Goodman J.W. (1994). Design of an optical reconfigurable shared-bus-hypercube interconnect. Appl. Opt. 33(8): 1434–1443

    Article  Google Scholar 

  16. Han X., Chen R.T. (2004) Improvement of multiprocessing performance by using optical centralized shared bus. In: Proceedings of the SPIE, vol. 5358, pp. 80–89 (2004)

  17. Shacham A., Small B.A., Liboiron-Ladouceur O. and Bergman K. (2005). A fully implemented 12 ×  12 data vortex optical packet switching interconnection network. J. Lightw. Technol. 23(10): 3066–3075

    Article  Google Scholar 

  18. Artundo I., Desmet L., Heirman W., Debaes C., Dambre J., Van Campenhout J. and Thienpont H. (2006). Selective optical broadcast component for reconfigurable multiprocessor interconnects. IEEE J. Select. Topic. Quant. Electron.: Spec. Issue Opt. Commun. 12(4): 828–837

    Article  Google Scholar 

  19. Heirman W., Dambre J., Artundo I., Debaes C., Thienpont H., Stroobandt D. and Van Campenhout J. (2007). Predicting reconfigurable interconnect performance in distributed shared-memory systems. Integ. the VLSI J. 40(4): 382–393

    Article  Google Scholar 

  20. Sterling, T., Savarese, D., Becker, D.J., Dorband, J.E., Ranawake, U.A., Packer, C.V.: Beowulf: A parallel workstation for scientic computation, In: Proceedings of the International Conference on Parallel Processing, pp. 11–14. CRC Press, Boca Raton, USA (1995)

  21. Sánchez, J.L., Duato, J., García, J. M.: Using channel pipelining in reconfigurable interconnection networks. In: 6th Euromicro Workshop on Parallel and Distributed Processing, 1998.

  22. Leiserson C.E., Abuhamdeh Z.S., Douglas D.C., Feynman C.R., Ganmukhi M.N., Hill J.V., Hillis W.D., Kuszmaul B.C., Pierre M.A.S., Wells D.S., Wong-Chan M.C., Yang S.-W. and Zak R. (1996). The network architecture of the Connection Machine CM-5. J. Parallel Distributed Comput. 33(2): 145–158

    Article  Google Scholar 

  23. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 programs: Characterization and methodological considerations. In: Proceedings of the 22th International Symposium on Computer Architecture, pp. 24–36. Santa Margherita Ligure, Italy (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Heirman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heirman, W., Dambre, J., Artundo, I. et al. Predicting the performance of reconfigurable optical interconnects in distributed shared-memory systems. Photon Netw Commun 15, 25–40 (2008). https://doi.org/10.1007/s11107-007-0084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-007-0084-z

Keywords

Navigation