Skip to main content
Log in

A frequent-pattern approach for optical networks routing planning

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Optical burst switching (OBS) networks have been receiving much attention as a promising approach to build the next generation optical Internet. In the bufferless DWDM switching technology, burst loss that should be minimized is the key design parameter. One of the critical design issues in OBS network is how to plan the optimal routing path in order to minimize burst dropping due to network resource contention. This study proposes the burst frequent-pattern tree (BFP-Tree) approach to pre-determine a suitable routing path in the OBS network. The BFP-Tree approach essentially is a learning-based mechanism that is able to determine a suitable transmission path from the historical network transaction data. The experiment results show that the successful rates of routing paths obtained by the BFP-Tree approach are able to converge to those of the optimal results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaminow I.P. et al.: A wideband all-optical WDM network. IEEE J. Sel. Areas Commun. 14(5), 780–799 (1996) doi:10.1109/49.510903

    Article  Google Scholar 

  2. Qiao C., Yoo M.: Optical burst switching (OBS)-a new paradigm for an optical internet. J. High Speed Netw 8(1), 69–84 (1999)

    Google Scholar 

  3. Li J., Qiao C., Chen Y.: Recent progress in the scheduling algorithms in optical-burst-switching networks. J. Opt. Networking 3(4), 229–241 (2004) doi:10.1364/JON.3.000229

    Article  Google Scholar 

  4. Karasan E., Ayanoglu E.: Effects of wavelength routing and selection algorithms on wavelength conversion gain in WDM optical networks. IEEE/ACM Trans. Networking 6(2), 186–196 (2002)

    Article  Google Scholar 

  5. Teng J., Rouskas G.N.: Wavelength selection in OBS networks using traffic engineering and priority-based concepts. IEEE J. Sel. Areas Commun. 23(8), 1658–1669 (2005) doi:10.1109/JSAC.2005.851794

    Article  Google Scholar 

  6. Bregni S., Guerra G., Pattavina A.: Optical switching IP traffic using input buffered architectures. Opt. Netw. Mag. 3(6), 20–29 (2002)

    Google Scholar 

  7. Hunter D.K., Chia M.C., Andonovic I.: Buffering in optical packet switches, IEEE/OSA. J. Lightwave Technol. 16(12), 2081–2094 (1998) doi:10.1109/50.736577

    Article  Google Scholar 

  8. Anpeng H., Linzhen X.: A novel segmentation and feedback model for resolving contention in optical burst switching. Photonic Netw. Commun. 6(1), 61–67 (2003) doi:10.1023/A:1023638825222

    Article  Google Scholar 

  9. Lee S., Kim H., Song J., Griffith D.: A study on deflection routing in optical burst-switched networks. Photonic Netw. Commun. 6(1), 51–59 (2003) doi:10.1023/A:1023686708384

    Article  Google Scholar 

  10. Wang X., Morikawa H., Aoyama T.: Priority-based wavelength assignment algorithm for burst switched WDM optical networks. IEICE Trans. Commun. e86-b(5), 1508–1514 (2003)

    Google Scholar 

  11. Ishii D., Yamanaka N., Sasase I.: Self-learning route selection scheme using multi-path searching packets in an OBS network. J. Opt. Networking 4(7), 432–445 (2005) doi:10.1364/JON.4.000432

    Article  Google Scholar 

  12. Yang L., Rouskas G.N.: Adaptive path selection in OBS networks, IEEE/OSA. J. Lightwave Technol. 24(8), 3002–3011 (2006) doi:10.1109/JLT.2006.878087

    Article  Google Scholar 

  13. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. Proceedings of the ACM-SIGMOD International Conference, pp. 207–216. Washington, D. C., USA, May 1993

  14. Borgelt, C., Kruse, R.: Induction of association rules: apriori implementation. 15th Conference on Computational Statistics, pp. 395–400, (Compstat 2002, Berlin, Germany). Physica Verlag, Heidelberg, Germany (2002)

  15. Orlando, S., Palmerini, P., Perego, R.: Enhancing the apriori algorithm for frequent set counting. Proceedings of the 3rd International Conference on Data Warehousing and Knowledge Discovery, pp. 71–82. Munich, Germany, September 5–7, (2001)

  16. Chen G., Wei Q.: Fuzzy association rules and the extended mining algorithms. Inf. Sci. 147(1–4), 201–228 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Han J., Pei J., Yin Y., Mao R.: Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Min. Knowl. Discov. 8(1), 53–87 (2004) doi:10.1023/B:DAMI.0000005258.31418.83

    Article  MathSciNet  Google Scholar 

  18. Hwang I.S., Chiu C.C., Su R.R., Shyu Z.D.: Burst routing planning for optical networks using the association rule approach. Int. J. Comput. Sci. Netw. Secur. (IJCSNS) 6(10), 173–178 (2006)

    Google Scholar 

  19. Wu C.: Applying frequent itemset mining to identify a small itemset that satisfies a large percentage of orders in a warehouse. Comput. Oper. Res. 33(11), 3161–3170 (2006) doi:10.1016/j.cor.2005.01.026

    Article  MATH  Google Scholar 

  20. Qiao C.: Labeled optical burst switching for IP-over-WDM integration. IEEE Commun. Mag. 38(9), 104–114 (2000) doi:10.1109/35.868149

    Article  Google Scholar 

  21. Maunder, A.S., Hjálmtýsson, G., VanderMerwe, K., Ramakrishnan K.K.: Evaluating the performance of UNITE’s hop-by-hop routing vs. source routing, ATM Forum/98–0784, October (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I-Shyan Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, IS., Chiu, C. & Shyu, ZD. A frequent-pattern approach for optical networks routing planning. Photon Netw Commun 17, 218–225 (2009). https://doi.org/10.1007/s11107-008-0156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-008-0156-8

Keywords

Navigation