Skip to main content
Log in

Virtual topology transition sequence problem on WDM networks with dedicated protection

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Wavelength-division multiplexing (WDM) technology has emerged as a promising technology for backbone networks. The set of all-optical communication channels (lightpaths) in the optical layer defines the virtual topology for the upper layer applications. Since the traffic demand of upper layer applications fluctuates from time to time, it is required to reconfigure the underlying virtual topology in the optical layer accordingly. However, the reconfiguration for the virtual topology is reluctantly disruptive to the network since some lightpaths should be torn down and some traffic has to be buffered or rerouted during the reconfiguration process. Therefore, it needs to have an efficient transition method to shift the current virtual topology to the new one so as to minimize the effect of the reconfiguration on the upper layer traffic. In this article, the WDM virtual topology transition sequence problem (WVTTSP) which minimizes the average weighted delay (AWD) is studied. Since the WVTTSP is NP-hard, a heuristic solution model is proposed to solve it. Simulation results show that the proposed least weighted distance first (LWDF) method can find the best result and the time spent by it is less than 4 s for a middle-sized network with 100 links and with 30 wavelengths per link.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramaswami R., Sivarajan K.N.: Optical Networks—A Practical Perspective. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  2. Wuttisittikulkij, L., O’Mahony, M.J.: Design of an efficient and practical algorithm for wavelength assignment in multiwavelength ring transport networks. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM’97), Phoenix, AZ, USA, pp. 571–575, Nov. 1997

  3. Erlebach, T., Jansen, K.: Scheduling of virtual connections in fast networks. In: Proceedings of Fourth Parallel Syst. and Algorithms Workshop (PASA’96), Julich, Germany, pp. 13–32 (1996)

  4. Mukherjee B., Banerjee D., Ramamurthy R.: Some principles for designing a wide-area optical network. IEEE/ACM Trans. Netw. 4(5), 684–696 (1996)

    Article  Google Scholar 

  5. Rouskas G.N., Ammar M.H.: Dynamic reconfiguration in multihop WDM networks. J. High Speed Netw. 4(3), 221–238 (1995)

    Google Scholar 

  6. Ramaswami R., Sivarjan K.N.: Design of logical topologies for wavelength-routed optical networks. IEEE J. Sel. Area. Commun. 14(5), 840–851 (1996)

    Article  Google Scholar 

  7. Banerjee D., Mukherjee B.: Wavelength-routed optical networks: linear formulation, resource budgeting tradeoffs, and a reconfiguration study. IEEE/ACM Trans. Netw. 8(5), 598–607 (2000)

    Article  Google Scholar 

  8. Chlamtac I., Ganz A., Karmi G.: Lightpath communications: an approach to high bandwidth optical WAN’s. IEEE Trans. Commun. 40(7), 1171–1182 (1992)

    Article  Google Scholar 

  9. Ramamurthy, R., Ramakrishnan, A.: Virtual topology reconfiguration of wavelength-routed optical WDM networks. In: Proceedings of IEEE Global Telecommunications (GLOBECOM 2000), San Francisco, CA, pp. 1269–1275 (2000)

  10. Murthy C.S.R., Gurusamy M.: WDM Optical Networks. Prentice-Hall, Englewood Cliffs, NJ (2002)

    Google Scholar 

  11. Lee K., Siu K.Y.: On the reconfigurability of single-hub WDM ring networks. IEEE/ACM Trans. Netw. 11(2), 273–284 (2003)

    Article  Google Scholar 

  12. Gencata A., Mukherjee B.: Virtual-topology adaptation for WDM mesh networks under dynamic traffic. IEEE/ACM Trans. Netw. 11(2), 236–247 (2003)

    Article  Google Scholar 

  13. Sreenath N., Murthy C.S.R., Gurucharan B.H., Mohan G.: A two-stage approach for virtual topology reconfiguration of WDM optical networks. Opt. Netw. Mag. 2(3), 58–71 (2001)

    Google Scholar 

  14. Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks-part I: protection. In: Proceedings of Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’99), New York, NY, USA, pp. 744–751 (1999)

  15. Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks-part II: restoration. In: Proceedings of IEEE Int. Conf. Communications (ICC 99), Vancouver, BC, Canada, pp. 2023–2030, June 1999

  16. Iraschko R., Grover W.: A highly efficient path-restoration protocol for management of optical network transport integrity. IEEE J. Sel. Area. Commun. 18(5), 779–794 (2000)

    Article  Google Scholar 

  17. Mohan G., Murthy C.S.R., Somani A.K.: Efficient algorithms for routing dependable connections in WDM optical networks. IEEE/ACM Trans. Netw. 9(10), 553–566 (2001)

    Article  Google Scholar 

  18. Sengupta, S., Ramamurthy, R.: Capacity efficient distributed routing of mesh-restored lightpaths in optical networks. In: Proceedings of Global Telecommunications Conference (GLOBECOM’01), San Antonio, TX, USA, pp. 2129–2133 (2001)

  19. Luo, H., Ruan, L.: Load balancing heuristics for dynamic establishment of restorable lightpaths. In: Proceedings of Eleventh International Conference on Computer Communications and Networks (ICCCN 2002), Miami, USA, pp. 472–477 (2002)

  20. Baroni S., Bayvel P., Gibbens R., J. Korotky S.K.: Analysis and design of resilient multifiber wavelength-routed optical transport networks. IEEE/OSA J. Lightwave Technol. 17(5), 743–758 (1999)

    Article  Google Scholar 

  21. Miyao Y., Saito H.: Optimal design and evaluation of survivable WDM transport networks. IEEE J. Sel. Area. Commun. 16(7), 1190–1198 (1998)

    Article  Google Scholar 

  22. Sridharan M., Salapaka M.V., Somani A.K.: A practical approach to operating survivable WDM networks. IEEE J. Sel. Area. Commun. 20(1), 34–46 (2002)

    Article  Google Scholar 

  23. Suurballe J.W., Tarjan R.E.: A quick method for finding shortest pairs of disjoint paths. Networks 14, 325–336 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  24. Van Caenegem B., Van Parys W., De Turck F., Demeester P.M.: Dimensioning of survivable WDM networks. IEEE J. Sel. Area. Commun. 16(7), 1146–1157 (1998)

    Article  Google Scholar 

  25. Kato, M., Oie, Y.: Reconfiguration procedures for torus lightwave networks. In: Proceedings of IEEE Int. Conf. Communications (ICC 98), Atlanta, GA, USA, pp. 531–536 (1998)

  26. Modiano, E., Narula-Tam, A.: Survivable routing of logical topologies in WDM networks. In: Proceedings of IEEE Computer and Communications Societies Twentieth Annual Joint Conference, (INFOCOM 2001), Anchorage, AK, USA, 348–357 (2001)

  27. Takagi, H., Zhang, Y., Jia, X., Takagi, H.: Reconfiguration heuristics for logical topologies in wide-area WDM networks. In: Proceedings of IEEE Global Telecommunications (GLOBECOM 02), Taipei, Taiwan, pp. 2701–2705 (2002)

  28. Zhang Y., Murata M., Takagi H., Ji Y.: Traffic-based reconfiguration for logical topologies in large-scale WDM optical networks. IEEE J. Lightwave Technol. 23(10), 2854–2867 (2005)

    Article  Google Scholar 

  29. Labourdette J.F.P., Hart G.W., Acampora A.S.: Branch-exchange sequences forreconfiguration of lightwave networks. IEEE Trans. Commun. 42(10), 2822–2832 (1994)

    Article  Google Scholar 

  30. Narula-Tam A., Modiano E.: Dynamic load balancing in WDM packet networks with and without wavelength constraints. IEEE J. Sel. Area. Commun. 18(10), 1972–1979 (2000)

    Article  Google Scholar 

  31. Baldine I., Rouskas G.N.: Traffic adaptive WDM networks: a study of reconfiguration issues. J. Lightwave Technol. 19(4), 433–455 (2001)

    Article  Google Scholar 

  32. Golab W., Boutaba R.: Policy-driven automated reconfiguration for performance management in WDM optical networks. IEEE Commun. Mag. 42(1), 44–51 (2004)

    Article  Google Scholar 

  33. Narula-Tam, A., Modiano, E.: Dynamic load balancing for WDM based packet networks. In: Proceedings of IEEE Computer and Communications Societies Nineteenth Annual Joint Conference, (INFOCOM 2000), Tel Aviv, Israel, pp. 1010–1019 (2000)

  34. Mohan G., Ernest P.H.H., Bharadwaj V.: Virtual topology reconfiguration in IP/WDM optical ring networks. Comput. Commun. 26(2), 91–102 (2003)

    Article  Google Scholar 

  35. Bala, K., Ellinas, G., Post, M.: Towards hitless reconfiguration in WDM optical networks for ATM transport. In: Proceedings of IEEE Global Telecommunications (GLOBECOM’96), London, U.K., pp. 316–320, Nov. 1996

  36. Reddy, G.S.K., Murthy, C.S.R., Manimaran, G.: Reconfiguration based failure restoration in wavelength-routed WDM networks. In: Proceedings of IEEE Dependable Systems and Networks (DSN 2000), New York, USA, pp. 543–552, June 2000

  37. Brzezinski A., Modiano E.: Dynamic reconfiguration and routing algorithms for IP-over-WDM networks with stochastic traffic. J. Lightwave Technol. 23(10), 3188–3205 (2005)

    Article  Google Scholar 

  38. Din D.-R.: A genetic algorithm for solving virtual topology configuration transition problem in WDM network. Comput. Commun. 30(4), 767–781 (2007)

    Article  Google Scholar 

  39. Kuhn H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2, 83–97 (1955)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Der-Rong Din.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Din, DR. Virtual topology transition sequence problem on WDM networks with dedicated protection. Photon Netw Commun 18, 174–182 (2009). https://doi.org/10.1007/s11107-008-0181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-008-0181-7

Keywords

Navigation