Skip to main content

Advertisement

Log in

Joint optimization of delay and congestion in wavelength-routed optical networks using genetic algorithms

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A new multipurpose genetic algorithm, based on Pareto optimality, is proposed to design logical topologies for wavelength-routed optical networks with the aim of minimizing both the congestion and the end-to-end delay. Simulation results show its efficiency when compared with other previously proposed algorithms, achieving in most cases optimal or near-optimal solutions, and in less time than other methods. Moreover, since the algorithm relies on Pareto optimality, not only does it obtain a single logical topology but a set of them, so that the network designer can easily select the most appropriate one according to the current network requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukherjee B.: Optical Communication Networks. McGraw-Hill, New York (1997)

    Google Scholar 

  2. Labourdette J.-F.P., Acampora A.S.: Logically rearrangeable multihop lightwave networks. IEEE Trans. Commun. 39(8), 1223–1230 (1991). doi:10.1109/26.134012

    Article  Google Scholar 

  3. Banerjee D., Mukherjee B.: Wavelength-routed optical networks: linear formulation, resource budgeting tradeoffs, and a reconfiguration study. IEEE/ACM Trans. Netw. 8(5), 598–607 (2000)

    Article  Google Scholar 

  4. Krishnaswamy R.M., Sivarajan K.N.: Design of logical topologies: a linear formulation for wavelength-routed optical networks with no wavelength changers. IEEE/ACM Trans. Netw. 9(2), 186–198 (2001)

    Article  Google Scholar 

  5. Almeida R.T.R., de Calmon L.C., Olivieira E., Segatto M.E.V.: Design of virtual topologies for large optical networks through an efficient MILP formulation. Opt. Switch. Netw. 3(1), 2–10 (2006). doi:10.1016/j.osn.2005.10.002

    Article  Google Scholar 

  6. Ramaswami R., Sivarajan K.N.: Design of logical topologies for wavelength routed optical networks. IEEE J. Sel. Areas Commun. 14(5), 840–851 (1996). doi:10.1109/49.510907

    Article  Google Scholar 

  7. Liu, Z., Jaekel, A., Bandyopadhyay, S.: A genetic algorithm for optimization of logical topologies in optical networks. In: Procceedings of International Parallel and Distributed Processing Symposium, IPDPS’02, pp. 202–209 (2002)

  8. Gazen C., Ersoy C.: Genetic algorithms for designing multihop lightwave network topologies. Artif. Intell. Eng. 13(3), 211–221 (1999). doi:10.1016/S0954-1810(98)00019-3

    Article  Google Scholar 

  9. Grosso A., Leonardi E., Mellia M., Nucci A.: Logical topologies design over WDM wavelength routed networks robust to traffic uncertainties. IEEE Commun. Lett. 5(4), 172–174 (2001). doi:10.1109/4234.917104

    Article  Google Scholar 

  10. Ghose S., Kumar R., Banerjee N., Datta R.: Multihop virtual topology design in WDM optical networks for self-similar traffic. Photonic Netw. Commun. 10(2), 199–214 (2005). doi:10.1007/s11107-005-2484-2

    Article  Google Scholar 

  11. Durán R.J. et al.: Genetic algorithm to design logical topologies in reconfigurable WDM networks. Photonic Netw. Commun. 17(1), 21–33 (2009). doi:10.1007/s11107-008-0140-3

    Article  Google Scholar 

  12. Zheng J., Zhou B., Mouftah H.T.: Virtual topology design and reconfiguration for virtual private networks (VPN) over all-optical WDM networks. Photonic Netw. Commun. 7(3), 255–266 (2004). doi:10.1023/B:PNET.0000026890.01257.61

    Article  Google Scholar 

  13. Xu R., Sezaki K., Tanaka Y.: A two-stage simulated annealing logical topology reconfiguration in IP over WDM networks. IEICE Trans. Commun. E88-B(6), 2483–2494 (2005)

    Article  Google Scholar 

  14. Huiban, Y., Mateus, G.R.: A multiobjective approach of the virtual topology design and routing problem in WDM networks. In: Proceedings of ICT 2005, 12th International Conference on Telecommunications, Capetown, South Africa (2005)

  15. Durán, R.J., et al.: Minimization of end-to-end delay in reconfigurable WDM Networks using genetic algorithms. Eur. Trans. Telecomm. (to be published). doi:10.1002/ett.1344

  16. Dutta R., Rouskas G.N.: A survey of virtual topology design algorithms for wavelength routed optical networks. Opt. Netw. Mag. 1(1), 73–89 (2000)

    Google Scholar 

  17. Leonardi E., Mellia M., Ajmone Marsan M.: Algorithms for the logical topology design in WDM all-optical networks. Opt. Netw. Mag. 1(1), 35–46 (2000)

    Google Scholar 

  18. Goldberg D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  19. Zang H., Jue J.P., Mukherjee B.: A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Opt. Netw. Mag. 1(1), 47–60 (2000)

    Google Scholar 

  20. Mokhtar A., Azizoglu M.: Adaptative wavelength routing in all-optical networks. IEEE/ACM Trans. Netw. 6(2), 197–206 (1998)

    Article  Google Scholar 

  21. Kleinrock, L.: Queueing systems. Volume II: computer applications, pp. 214–226. Wiley (1976)

  22. OMNeT++ discrete event simulator system. http://www.omnetpp.org. Accessed 12 June 2008

  23. Project Akaroa. University of Canterbury, Christchurch, New Zealand. http://www.cosc.canterbury.ac.nz/research/RG/net_sim/simulation_group/akaroa. Accessed 12 June 2008

  24. Baroni S., Bayvel P.: Wavelength requirements in arbitrarily connected wavelength-routed optical networks. J. Lightwave Technol. 15(2), 242–251 (1997). doi:10.1109/50.554330

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón J. Durán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durán, R.J., de Miguel, I., Merayo, N. et al. Joint optimization of delay and congestion in wavelength-routed optical networks using genetic algorithms. Photon Netw Commun 18, 334–344 (2009). https://doi.org/10.1007/s11107-009-0196-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-009-0196-8

Keywords

Navigation