Skip to main content

Adaptive polling algorithm to provide subscriber and service differentiation in a Long-Reach EPON

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

A novel interleaved polling algorithm for Long-Reach EPONs is proposed in order to simultaneously provide subscriber and class of service differentiation. It is demonstrated that the new polling algorithm applied to a typical 100 km Long-Reach EPON performs better than centralized methods, where bandwidth prediction is needed to overcome the higher round trip time in which ONUs cannot transmit. As polling methods in Long-Reach EPONs do not require prediction, they are much simpler and show less computational complexity than centralized schemes, avoiding the inaccuracy of bandwidth prediction. Simulation results show that the new algorithm increases the achieved throughput when compared to centralized algorithms with traffic prediction, obtaining a significant reduction of both mean packet delay and packet loss ratio for the highest priority service level profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shea D., Mitchell J.E.: Long-Reach optical access technologies. IEEE Netw. 21(5), 5–11 (2007)

    Article  Google Scholar 

  2. Shea, D.P., Ellis, A.D., Payne, D.B., Davey, R.P., Mitchell, J.E.: 10 Gbit/s PON with 100 km reach and x1024 split. In: Proceedings of the European Conference on Optical Communications (ECOC), pp. 850–851, Rimini, Italy (2003)

  3. Shea D.P., Mitchell J.E.: A 10-Gbit/s 1024-way-split 100 km long-reach optical-access network. IEEE J. Lightwave Technol. 25(3), 685–693 (2007)

    Article  Google Scholar 

  4. MacHale, E.K., Talli, G., Townsend, P.D.: 10 Gbit/s Bidirectional transmission in a 116 km reach hybrid DWDM-TDM PON. In: Proceedings of 2nd International Conference on Access Technologies, pp. 78–40. Cambridge, UK (2006)

  5. Talli, G., Townsend, P.D.: Feasibility demonstration of 100 km reach DWDM SuperPON with upstream bit rates of 2.5 Gb/s and l0 Gb/s. In: Proceedings Optical Fiber Communication Conference OFC 2005, pp. 1–3, Anaheim, USA (2005)

  6. Talli G., Townsend P.D.: Hybrid DWDM-TDM long-reach PON for next-generation optical access. IEEE J. Lightwave Technol. 24(7), 2827–2834 (2006)

    Article  Google Scholar 

  7. Pesavento M., Kelsey A.: PONs for the broadband local loop. Lightwave 16(10), 68–74 (1999)

    Google Scholar 

  8. Lung B.: PON architecture futureproofs FTTH. Lightwave 16(10), 104–107 (1999)

    Google Scholar 

  9. Assi C., Ye Y., Dixit S., Ali M.A.: Dynamic bandwidth allocation for quality-of-service over ethernet PONs. IEEE J. Sel. Areas Commun. 21(9), 1467–1477 (2003)

    Article  Google Scholar 

  10. Ghani N., Shami A., Assi C., Raja M.Y.: Intra-ONU bandwidth scheduling in ethernet passive optical networks. IEEE J. Sel. Areas Commun. 8(11), 683–685 (2004)

    Google Scholar 

  11. Sherif S.R., Hadjiantonis A., Ellinas G., Assi C., Ali M.: A novel decentralized Ethernet-Based PON access architecture for provisioning differentiated QoS. J. Lightwave Technol. 22(11), 2483–2497 (2004)

    Article  Google Scholar 

  12. Choi S., Huh J.: Dynamic bandwidth allocation algorithm for multimedia services over Ethernet PONs. ETRI J. 24(6), 465–468 (2002)

    Article  Google Scholar 

  13. Choi S.-I.: Cycling polling-based dynamic bandwidth allocation for differentiated classes of service in ethernet passive optical networks. Photo. Netw. Commun. 7(1), 87–96 (2004)

    Article  Google Scholar 

  14. Chang C.-H., Kourtessis P., Senior J.M.: GPON service level agreement based dynamic bandwidth assignment protocol. Electron. Lett. 42(20), 1173–1174 (2006)

    Article  Google Scholar 

  15. Chang, C.-H., Alvarez, N.M., Kourtessis, P., Senior, J.M.: Dynamic bandwidth assignment for multi-service access in long-reach GPON. In: Proceedings of the European Conference on Optical Communications (ECOC), 3, Germany (2007)

  16. Kramer G., Mukherjee B., Pesavento G.: Ethernet PON (ePON): design and analysis of an optical access network. Photo. Netw. Commun. 3(3), 307–319 (2001)

    Article  Google Scholar 

  17. Luo Y., Ansari N.: Bandwidth allocation for multiservice access on EPONs. IEEE Commun. Mag. 43(2), 16–21 (2005)

    Article  Google Scholar 

  18. Byun H.-J., Nho J.-M., Lim J.-T.: Dynamic bandwidth allocation algorithm in ethernet passive optical networks. Electron. Lett. 39(13), 1001–1002 (2003)

    Article  Google Scholar 

  19. Kramer G., Mukherjee B., Pesavento G.: IPACT: a dynamic protocol for an Ethernet PON (EPON). IEEE Commun. Mag. 40(2), 74–80 (2002)

    Article  Google Scholar 

  20. Kramer G., Mukherjee B., Ye Y., Dixit S., Hirth R.: Supporting differentiated classes of service in Ethernet passive optical networks. J. Opt. Network. 1(8), 280–298 (2002)

    Google Scholar 

  21. Kramer G., Mukherjee B., Pesavento G.: Interleaved polling with adaptive cycle time (IPACT): a dynamic bandwidth distribution scheme in an optical access network. Photo. Netw. Commun. 4(1), 89–107 (2002)

    Article  Google Scholar 

  22. Nowak, D., Perry, P., Murphy, J.: A novel service level agreement based algorithm for differentiated services enabled Ethernet PONs. In: Proceedings of the 3rd International Conference on Optical Internet (COIN 2004) 3, pp. 598–599, Japan (2004)

  23. Nowak, D., Perry, P., Murphy, J.: Bandwidth allocation for service level agreement aware ethernet passive optical networks. In: Proceedings of the IEEE Global Telecommunications Conference (IEEE GLOBECOM 2004), 3, pp. 1953–1957, Dallas, Texas (2004)

  24. Ma, M., Zhu, Y., Cheng, T.-H.: A bandwidth guaranteed polling MAC protocol for ethernet passive optical networks. In: Proceedings of the Twenty Second Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2003), 1, pp. 22–31, San Francisco (2003)

  25. Kim, H., Park, H., Kang, D.-K., Kim, C., Yoo, G.-Y.: Sliding cycle time-based MAC protocol for service level agreeable ethernet passive optical network. In: Proceedings of the IEEE Conference on Communications (ICC 2005), 3, pp. 1848–1852, Seul, Korea (2005)

  26. Kramer, G., Mukherjee, B., Maislos, A.: Ethernet passive optical networks. In: Sudhir Dixit (ed.), Multiprotocol over DWDM: Building the Next Generation Optical Internet, pp. 229–275. Wiley (2003)

  27. Opnet Modeler Technologies http://www.opnet.com. Accessed 10 May 2008

  28. Kramer, G.: How efficient is EPON? White paper analyzing various constituents of EPON transmission overhead, Accessed 20 February 2008 (2002)

  29. IEEE 802.3ah Ethernet in the First File Task Force, IEEE 802.3ah Ethernet in the First File Task Force home page. http://www.ieee802.org/3/efm/public/. Accessed 20 June 2007

  30. ITU-T Recommendation G.1010, End-user multimedia QoS categories, Telecommunication Standardization Sector of ITU (2001). http://www.itu.int/rec/T-REC-G.1010-200111-I/en. Accessed 15 September 2008

  31. ITUT Recommendation G.114, One-way transmission time, in Series G: Transmission Systems and Media, Digital Systems and Networks, Telecommunication Standardization Sector of ITU (2000). http://www.itu.int/rec/T-REC-G.114-200305-I/en. Accessed 15 September 2008

  32. NTT, (2006). NTT VDSL service plan. http://www.asist.co.jp/jensspinnet/bflets.html, Accessed 18 December 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemí Merayo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merayo, N., Jiménez, T., Durán, R.J. et al. Adaptive polling algorithm to provide subscriber and service differentiation in a Long-Reach EPON. Photon Netw Commun 19, 257–264 (2010). https://doi.org/10.1007/s11107-009-0230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-009-0230-x

Keywords